Anthrax toxins: a paradigm of bacterial immune suppression (original) (raw)
Related papers
PLoS ONE, 2012
Bacillus anthracis, the agent of anthrax, produces two main virulence factors: a capsule and two toxins. Both lethal toxin (LT) and edema toxin (ET) paralyze the immune defense system. Here, we analyze the effects of LT and ET on the capacity of human monocyte-derived dendritic cells (MoDC) to produce proinflammatory chemokines. We show that both toxins disrupt proinflammatory chemokine production. LT has more pronounced effects than ET on CXCL8 production, which is correlated with impaired recruitment of neutrophils in vitro. Finally, we show that both toxins also differentially disrupt IL-12p70, IL-10, and TNF-a production. Taken together, these results demonstrate that both B. anthracis toxins alter MoDC functions and the activation of the innate immune system.
The Journal of Immunology, 2005
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-α, whereas LT targets IL-10 and TNF-α production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-γ secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by...
Anthrax toxins: A weapon to systematically dismantle the host immune defenses
Molecular Aspects of Medicine, 2009
Successful colonization of the host by bacterial pathogens relies on their capacity to evade the complex and powerful defenses opposed by the host immune system, at least in the initial phases of infection. The two toxins of Bacillus anthracis, lethal toxin and edema toxin, appear to have been shaped by evolution to assist the microorganism in this crucial function, in
T Cell Targeting by Anthrax Toxins: Two Faces of the Same Coin
Toxins, 2011
Bacillus anthracis, similar to other bacterial pathogens, has evolved effective immune evasion strategies to prolong its survival in the host, thus ensuring the unchecked spread of the infection. This function is subserved by lethal (LT) and edema (ET) toxins, two exotoxins produced by vegetative anthrax bacilli following germination of the spores. The structure of these toxins and the mechanism of cell intoxication are topics covered by other reviews in this issue. Here we shall discuss how B. anthracis uses LT and ET to suppress the immune defenses of the host, focusing on T lymphocytes, the key players in adaptive immunity. We shall also summarize recent findings showing that, depending on its concentration, ET has the ability not only to suppress T cell activation but also to promote the polarization of CD4 + T cells to the Th2 and Th17 subsets, highlighting the potential use of this toxin as an immunomodulator.
Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo
Infection and …, 2005
The causative agent of anthrax, Bacillus anthracis, produces two toxins that contribute in part to its virulence. Lethal toxin is a metalloprotease that cleaves upstream mitogen-activated protein kinase kinases. Edema toxin is a calmodulin-dependent adenylate cyclase. Previous studies demonstrated that the anthrax toxins are important immunomodulators that promote immune evasion of the bacterium by suppressing activation of macrophages and dendritic cells. Here we showed that injection of sublethal doses of either lethal or edema toxin into mice directly inhibited the subsequent activation of T lymphocytes by T-cell receptor-mediated stimulation. Lymphocytes were isolated from toxin-injected mice after 1 or 4 days and stimulated with antibodies against CD3 and CD28. Treatment with either toxin inhibited the proliferation of T cells.
Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling
Cellular Microbiology, 2007
Pathogenic strains of Bacillus anthracis produce two potent toxins, lethal toxin (LT), a metalloprotease that cleaves mitogen-activated protein kinase kinases, and oedema toxin (ET), a calcium/calmodulin-dependent adenylate cyclase. Emerging evidence indicates a role for both toxins in suppressing the initiation of both innate and adaptive immune responses, which are essential to keep the infection under control. Here we show that LT and ET inhibit chemotaxis of T-cells and macrophages by subverting signalling by both CXC and CC chemokine receptors. The data highlight a novel strategy of immunosuppression by B. anthracis based on inhibition of immune cell homing.
Anthrax Lethal Toxin and the Induction of CD4 T Cell Immunity
Toxins, 2012
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
BMC Immunology, 2012
Background: Anthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKK or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system. Results: Western Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p <0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT.
Cellular Microbiology, 2006
Bacillus anthracis must overcome host innate immune defences to establish a systemic anthrax infection. This is facilitated in part by lethal toxin (LT), a secreted virulence factor that consists of a cell-binding moiety, protective antigen (PA), and an enzymatic moiety, lethal factor (LF). PA binds cells through protein receptors and mediates the delivery of LF to the cytosol. LF is a protease that cleaves amino-terminal fragments from mitogen-activated protein kinase kinases (MAPKKs), preventing phosphorylation of their downstream targets. Here we report that LT reduces the amount of interleukin (IL)-8 produced and secreted by human endothelial cells. The reduction of IL-8 levels by LT was not attributable to reduced expression from the IL-8 promoter, but resulted from destabilization of IL-8 mRNA. Destabilization by LT was mediated through the 3′ untranslated region of the IL-8 transcript and could be mimicked by pharmacological inhibitors of MAPK pathways. LT diminished the induction of IL-8 mRNA and protein by lipopolysaccharide, indicating that the toxin can impair the ability of these cells to initiate an immune response. Destabilization of a cytokine transcript represents a new interference strategy used by either a bacterial or viral pathogen to reduce cytokine expression and may help B. anthracis to evade host immune defences.