Effect of a gap opening on the conductance of graphene superlattices (original) (raw)

Abstract

The electronic transmission and conductance of a gapped graphene superlattice were calculated by means of the transfer-matrix method. The system that we study consists of a sequence of electron-doped graphene as wells and hole-doped graphene as barriers. We show that the transmission probability approaches unity at some critical value of the gap. We also find that there is a domain around the critical gap value for which the conductance of the system attains its maximum value.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (52)

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666.
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438 (2005) 197.
  3. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim Proc. Nat. Acad. Sci. 102 (2005) 10451.
  4. Y. Zhang, Y. Tan, H. L. Stormer, P. Kim, Nature 438 (2005) 201 .
  5. A. K. Geim, Science 324 (2009) 1530.
  6. P. Avouris, Z. Chen, and V. Perebeinos, Nature Nanotech. 2 (2007) 605 .
  7. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 8 (2008) 902.
  8. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100 (2008) 016602.
  9. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101 (2008) 096802.
  10. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotech. 3 (2008) 491.
  11. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer Solid State Commun. 146 (2008) 351.
  12. K. Eng, R. N. McFarland, and B. E. Kane Appl. Phys. Lett. 87 (2005) 052106.
  13. E. H. Hwang and S. Das Sarma, Phys. Rev. B 75 (2007) 073301.
  14. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438 (2005) 201.
  15. J. Nilsson, a. H. Castro Neto, f. Guinea, and N. M. r. Peres, Phys. Rev.B 76 (2007) 165416.
  16. M.I. Katsnelson, K. S.Novoselov, A. K. Geim, Nature Phys. 2 (2006) 620.
  17. Y. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris Nano Lett. 9 (2009) 422.
  18. J. Kedzierski, P. Hsu, P. Healey, P. W. Wyatt, C. L. Keast, M. Sprinkle, C. Berger, and W. A. de Heer, IEEE Trans. Electron Devices 55 (2008) 2078.
  19. K. Novoselov, Nature Mater. 6 (2007) 720.
  20. Y. W. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 97 (2006) 216803.
  21. M. Y. Han, B. Ozyilmaz, Y. Zhang and P. Kim, Phys. Rev. Lett. 98 (2007) 206805.
  22. L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99 (2007) 186801.
  23. D. Finkenstadt, G. Pennington, and M. J. Mehl, Phys. Rev. B 76 (2006) 121405(R).
  24. Y.-W. Son, M. L. Cohen and S. G. Louie, Nature 444 (2006) 347.
  25. X.-F. Wang and T. Chakraborty, Phys. Rev. B 75 (2007) 033408.
  26. Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B 75 (2007) 041401(R).
  27. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95 (2005) 226801.
  28. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74 (2006) 165310.
  29. G. W. Semenoff, Phys. Rev. Lett. 53 (1994) 2449.
  30. K. Ziegler, Phys. Rev. B 53 (1996) 9653.
  31. V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, Int. J. Mod. Phys. B 21 (2007) 4611.
  32. A. Bostowick, T. Ohta, J. L. McCesney, K. V. Emtsev, T. Seyller, K. Horn and E. Rotenberg, New J. Phys. 9 (2007) 385.
  33. S. Y. Zhou, G. H. Gweon, A. V. Federov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6 (2007) 770.
  34. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, and A. Lanzara, Physica E 40 (2008) 2642.
  35. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, Phys. Rev. Lett. 101 (2008) 086402.
  36. D. A. Siegel, S. Y. Zhou, F. El Gabaly, A. V. Fedorov, A. K. Schmid, and A. Lanzara, Appl. Phys. Lett. 93 (2008) 243119.
  37. A. Grüneis and D. V. Vyalikh, Phys. Rev. B 77 (2008) 193401.
  38. A. Grüneis, K. Kummer and D. V. Vyalikh arXiv: 0904.3220.
  39. G. Li, A. Luican, and E. Y. Andrei arXiv:0803.4016.
  40. G. Giovannetti, P. A. Khomyako, G. Brocks, P. J. Kelly and J. Van den Brink, Phys. Rev. B 76 (2007) 073103.
  41. H. Hiura, Appl. Surf. Sci. 222 (2004) 374; J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Appl. Phys. Lett. 92 (2008) 123110.
  42. B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Phys. Rev. Lett. 98 (2007) 236803.
  43. C. Bai and X. Zhang, Phys. Rev. B. 76 (2007) 075430.
  44. N. Abedpour, A. Esmailpour, R. Asgari, and M. R. Rahimi Tabar, Phys. Rev. B 79 (2009) 165412.
  45. H. Sevinçli, M. Topsakal, and S. Ciraci, arXiv: 0711.2414.
  46. A. Qaiumzadeh and R. Asgari Phys. Rev. B 79 (2009) 075414;
  47. A. Qaiumzadeh, F. Joubari and R. Asgari, arXiv: 0810.4681.
  48. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press (1995).
  49. N. Dombey and A. Calogeracos, Physics Reports 315 (1999) 41; Paolo Christillin and Emilio d'Emilio, Phys. Rev. A 76 (2007) 042104 .
  50. E. H. Hauge and J. A. Stφvneng, Rev. Mod. Phys. 61 (1989) 917.
  51. H. G. Winful, Phys. Rev. Lett. 91 (2003) 260401.
  52. Zhenhua Wu, Kai Chang, J.T. Liu, X. J. Li, and K. S. Chan. J. Appl. Phys. 105 (2009) 043702. FIG. 1: Model of gapped graphene superlattices.