Exposure of the mosquito vector Culex pipiens to the malaria parasite Plasmodium relictum: effect of infected blood intake on immune and antioxidant defences, fecundity and survival (original) (raw)
Related papers
Experimental reduction of host Plasmodium infection load affects mosquito survival
Scientific Reports, 2019
Plasmodium transmission success depends upon the trade-off between the use of host resources to favour parasite reproduction and the negative effects on host health, which can be mediated by infection intensity. Despite its potential influence on parasite dynamics, the effects of infection intensity on both, birds and vectors, and on Plasmodium transmission success are still poorly understood. Here, we experimentally reduced the Plasmodium load in naturally infected wild house sparrows with the antimalarial primaquine to assess the effects of intensity of infection in the vertebrate hosts on Plasmodium transmission to and by mosquitoes. We monitored the survival of Culex pipiens mosquitoes throughout the development of the parasite and the infection status of the mosquitoes by analysing the head-thorax and saliva at 13 days post-exposure to birds. The proportion of mosquitoes infected by Plasmodium and the presence of Plasmodium in saliva were not associated with the medication trea...
Malaria journal, 2004
Arthropod vectors of disease may encounter more than one infected host during the course of their lifetime. The consequences of super-infection to parasite development are rarely investigated, but may have substantial epidemiological and evolutionary consequences. Using a rodent malaria model system, behavioural avoidance of super-infection was tested by examining whether already-infected Anopheles stephensi mosquitoes were less responsive to new vertebrate hosts if they were infected. Additionally, a second dose of parasites was given to malaria-infected mosquitoes on a biologically realistic time scale to test whether it impeded the development of a first infection. No effect of a second infected blood meal on either the prevalence or parasite burden arising from a first was found. Furthermore, it was found that not only were infected mosquitoes more likely to take a second blood meal than their uninfected counterparts, they were disproportionately drawn to infected hosts. The alt...
Avian malaria alters the dynamics of blood feeding in Culex pipiens mosquitoes
Malaria Journal
Background: Some Plasmodium species have the ability to modify the behaviour of their mosquito vectors. This is thought to be an adaptive strategy that maximizes the parasite's transmission. Methods: The effect of Plasmodium relictum infections on the blood feeding behaviour of Culex pipiens quinquefasciatus mosquitoes was monitored. Results: Plasmodium infections did not alter the proportion of blood fed mosquitoes but they did affect the dynamics and the size of the blood meal. Sporozoite-infected mosquitoes completed their blood meal 1.3 times later than uninfected mosquitoes and ended up with smaller blood meals. Conclusion: The potential adaptive nature of this manipulation of mosquito behaviour is discussed in the light of previous studies on other malaria models.
Interplay Between Plasmodium Infection and Resistance to Insecticides in Vector Mosquitoes
Journal of Infectious Diseases, 2014
Despite its epidemiological importance, the impact of insecticide resistance on vector-parasite interactions and malaria transmission is poorly understood. Here, we explored the impact of Plasmodium infection on the level of insecticide resistance to dichlorodiphenyltrichloroethane (DDT) in field-caught Anopheles gambiae sensu stricto homozygous for the kdr mutation. Results showed that kdr homozygous mosquitoes that fed on infectious blood were more susceptible to DDT than mosquitoes that fed on noninfectious blood during both ookinete development (day 1 after the blood meal) and oocyst maturation (day 7 after the blood meal) but not during sporozoite invasion of the salivary glands. Plasmodium falciparum infection seemed to impose a fitness cost on mosquitoes by reducing the ability of kdr homozygous A. gambiae sensu stricto to survive exposure to DDT. These results suggest an interaction between Plasmodium infection and the insecticide susceptibility of mosquitoes carrying insecticide-resistant alleles. We discuss this finding in relation to vector control efficacy.
Malaria Journal, 2010
Background Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. Methods In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. Results Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. Conclusions Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.
The American journal of tropical medicine and hygiene, 2005
We conducted a field study in an area of endemic malaria transmission in western Kenya to determine whether mosquitoes that feed on gametocyte-infected blood but do not become infected have reduced or enhanced fecundity in comparison to mosquitoes fed on uninfected blood. Fifteen paired membrane-feeding experiments were conducted in which two strains of Anopheles gambiae mosquitoes were simultaneously fed on either Plasmodium falciparum-infected blood from children or uninfected control blood from adults. The presence of noninfecting gametocytes in blood increased the probability that An. gambiae would produce eggs after one blood meal by sixfold (odds ratio for control relative to infected blood group 0.16; 95% CI 0.10-0.23). This result could not be explained by variation in blood meal size or hemoglobin content between hosts. When children cleared their infections, the difference in gravidity between mosquitoes fed on their blood and uninfected adults disappeared, suggesting this...
Infection, Genetics and Evolution, 2014
Unraveling selective forces that shape vector-parasite interactions has critical implications for malaria control. However, it remains unclear whether Plasmodium infection induces a fitness cost to their natural mosquito vectors. Moreover, environmental conditions are known to affect infection outcome and may impact the effect of infection on mosquito fitness. We investigated in the laboratory the effects of exposition to and infection by field isolates of Plasmodium falciparum on fecundity and survival of a major vector in the field, Anopheles coluzzii under different conditions of access to sugar resources after blood feeding. The results evidenced fitness costs induced by exposition and infection. When sugar was available after blood meal, infected and exposed mosquitoes had either reduced or equal to survival to unexposed mosquitoes while fecundity was either increased or decreased depending on the blood donor. Under strong nutritional stress, survival was reduced for exposed and infected mosquitoes in all assays. We therefore provide here evidence of an environmental-dependant reduced survival in mosquitoes exposed to infection in a natural and one of the most important parasite-mosquito species associations for human malaria transmission.
Parasites & vectors, 2014
Anopheles arabiensis is a major malaria vector in Africa. Adult females are likely to imbibe multiple blood meals during their lifetime. This results in regular exposure to potential toxins and blood-meal induced oxidative stress. Defence responses to these stressors may affect other factors of epidemiological significance, such as insecticide resistance and longevity. The aims of this study were to examine the effect of multiple blood-feeding on insecticide tolerance/resistance with increasing age, to assess the underlying biochemical mechanisms for the responses recorded, and to assess the effect of multiple blood-feeding on the life histories of adult females drawn from insecticide resistant and susceptible laboratory reared An. arabiensis. Laboratory reared An. arabiensis females from an insecticide resistant and an insecticide susceptible colony were offered either a single blood meal or multiple blood meals at 3-day intervals. Their tolerance or resistance to insecticide was t...
Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection
Insect Biochemistry and Molecular Biology, 2011
Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection.► The Anopheles gambiae L3-5 strain is refractory (R) to Plasmodium infection. ► R females have impaired state-3 respiration and a higher rate of mitochondrial electron leak. ► R fmealse also exhibits other major metabolic differences and have a reduced lifespan. ► Decreasing state-3 respiration in susceptible mosquitoes reduces Plasmodium infection.