Variability of surface climate in simulations of past and future (original) (raw)

Abstract

It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios, yet comparatively little is known about future changes in climate variability. This study explores changes in climate variability over the large range of climates simulated by the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3), including time slices of the Last Glacial Maximum, the mid-Holocene, and idealized experiments (1 % CO 2 and abrupt4×CO 2). These states encompass climates within a range of 12 • C in global mean temperature change. We examine climate variability from the perspectives of local interannual change, coherent climate modes, and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. At the global scale, temperature variability is inversely related to mean temperature change on intra-seasonal to multidecadal timescales. This decrease is stronger over the oceans, while there is increased temperature variability over subtropical land areas (40 • S-40 • N) in warmer simulations. We systematically investigate changes in the standard deviation of modes of climate variability, including the North Atlantic Oscillation, the El Niño-Southern Oscillation, and the Southern Annular Mode, with global mean temperature change. While several climate modes do show consistent relationships (most notably the Atlantic Zonal Mode), no generalizable pattern emerges. By compositing extreme precipitation years across the ensemble, we demonstrate that the same large-scale modes influencing rainfall variability in Mediterranean climates persist throughout paleoclimate and future simulations. The robust nature of the response of climate variability, between cold and warm climates as well as across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (123)

  1. Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 4, 564-569, https://doi.org/10.1038/nclimate2235, 2014.
  2. Adler, R. F., Gu, G., Wang, J.-J., Huffman, G. J., Curtis, S., and Bolvin, D.: Relationships between global precipi- tation and surface temperature on interannual and longer timescales (1979-2006), J. Geophys. Res., 113, D22104, https://doi.org/10.1029/2008JD010536, 2008.
  3. Alexander, L. and Perkins, S.: Debate heating up over changes in climate variability, Environ. Res. Lett., 8, 7-10, https://doi.org/10.1088/1748-9326/8/4/041001, 2013.
  4. Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 228-232, https://doi.org/10.1038/nature01092, 2002.
  5. Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991, 2010.
  6. Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012.
  7. Annan, J. D. and Hargreaves, J. C.: A new global reconstruction of temperature changes at the Last Glacial Maximum, Clim. Past, 9, 367-376, https://doi.org/10.5194/cp-9-367-2013, 2013.
  8. Annan, J. D. and Hargreaves, J. C.: A perspective on model-data surface temperature comparison at the Last Glacial Maximum, Quaternary Sci. Rev., 107, 1-10, https://doi.org/10.1016/j.quascirev.2014.09.019, 2015.
  9. Ashok, K., Chan, W.-L., Motoi, T., and Yamagata, T.: Decadal variability of the Indian Ocean dipole, Geophys. Res. Lett., 31, L24207, https://doi.org/10.1029/2004GL021345, 2004.
  10. Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCal- Adjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889-3913, https://doi.org/10.5194/gmd-12- 3889-2019, 2019.
  11. Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Hender- son, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shu- man, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775-802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
  12. Bathiany, S., Dakos, V., Scheffer, M., and Lenton, T. M.: Climate models predict increasing temperature variability in poor countries, Sci. Adv., 4, eaar5809, https://doi.org/10.1126/sciadv.aar5809, 2018.
  13. Bjerknes, J.: A possible response of the atmospheric Hadley circu- lation to equatorial anomalies of ocean temperature, Tellus A, 10, 820-829, https://doi.org/10.3402/tellusa.v18i4.9712, 1966. Bjerknes, J.: Atmospheric Teleconnections from the Equatorial Pacific, Mon. Weather Rev., 97, 163-172, https://doi.org/10.1175/1520- 0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969.
  14. Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models us- ing palaeoclimatic data, Nat. Clim. Change, 2, 417-424, https://doi.org/10.1038/nclimate1456, 2012.
  15. Brierley, C.: Past 2 Future insights from a contstantly varying past, available at: http://www.past2future.org, last access: 1 Decem- ber 2019.
  16. Brierley, C. and Wainer, I.: Inter-annual variability in the tropi- cal Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3, Clim. Past, 14, 1377- 1390, https://doi.org/10.5194/cp-14-1377-2018, 2018.
  17. Broccoli, A. J.: Tropical Cooling at the Last Glacial Maxi- mum: An Atmosphere-Mixed Layer Ocean Model Simula- tion, J. Climate, 13, 951-976, https://doi.org/10.1175/1520- 0442(2000)013<0951:TCATLG>2.0.CO;2, 2000.
  18. Brown, J., Brierley, C., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C., Zhang, Q., Zhao, A., Braconnot, P., Brady, E., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A., Lohmann, G., Morozova, P., Ohgaito, R., O'ishi, R., Otto-Bliesner, B., Peltier, R., Shi, X., Sime, L., Volodin, E., Zhang, Z., and Weipeng, Z.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-155, in review, 2020.
  19. Brown, P. T., Ming, Y., Li, W., and Hill, S. A.: Change in the magnitude and mechanisms of global temperature variability with warming, Nat. Clim. Change, 7, 743-748, https://doi.org/10.1038/nclimate3381, 2017.
  20. Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El Nino events due to greenhouse warming, Nat. Clim. Change, 4, 111-116, https://doi.org/10.1038/nclimate2100, 2014.
  21. Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., and McPhaden, M. J.: Increased variabil- ity of eastern Pacific El Nino under greenhouse warming, Na- ture, 564, 201-206, https://doi.org/10.1038/s41586-018-0776-9, 2018.
  22. Chatfield, C.: The analysis of time series: an introduction, 6th Edn., Chapman & Hall/CRC Texts in Statistical Science, Florida, USA, 2004.
  23. Chavaillaz, Y., Codron, F., and Kageyama, M.: Southern westerlies in LGM and future (RCP4.5) climates, Clim. Past, 9, 517-524, https://doi.org/10.5194/cp-9-517-2013, 2013.
  24. Christensen, J., Kumar, K. K., Aldrian, E., An, S.-I., Cavalcanti, I., de Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J., Kitoh, A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D., Xie, S.-P., and Zhou, T.: Climate phenomena and their relevance for future regional climate change, in: Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plat- tner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1217-1308, https://doi.org/10.1017/CBO9781107415324.028, 2013.
  25. Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quaternary Sci. Rev., 21, 1-7, https://doi.org/10.1016/S0277-3791(01)00118-4, 2002.
  26. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A., and Wehner, M.: Long-term climate change: projections, commitments and irre- versibility, in: Climate Change 2013 -The Physical Science Basis: Contribution of Working Group I to the Fifth Assess- ment Report of the Intergovernmental Panel on Climate Change, vol. 9781107057, edited by: Stocker, T. F., Qin, D., Plattner, G.- K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., and Midgley, P., Cambridge University Press, Cambridge, 1029- 1136, https://doi.org/10.1017/CBO9781107415324.024, 2013.
  27. Coumou, D. and Rahmstorf, S.: A decade of weather extremes, Nat. Clim. Change, 2, 1-6, https://doi.org/10.1038/nclimate1452, 2012.
  28. Cox, P. M., Huntingford, C., and Williamson, M. S.: Emer- gent constraint on equilibrium climate sensitivity from global temperature variability, Nature, 553, 319-322, https://doi.org/10.1038/nature25450, 2018.
  29. Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar. Sci., 2010, 2, 115-143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
  30. Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variabil- ity, Clim. Dynam., 38, 527-546, https://doi.org/10.1007/s00382- 010-0977-x, 2012a.
  31. Deser, C., Phillips, A. S., Tomas, R. A., Okumura, Y. M., Alexan- der, M. A., Capotondi, A., Scott, J. D., Kwon, Y. O., and Ohba, M.: ENSO and pacific decadal variability in the community climate system model version 4, J. Climate, 25, 2622-2651, https://doi.org/10.1175/JCLI-D-11-00301.1, 2012b.
  32. Doi, T., Tozuka, T., and Yamagata, T.: The Atlantic meridional mode and its coupled variability with the Guinea dome, J. Climate, 23, 455-475, https://doi.org/10.1175/2009JCLI3198.1, 2010.
  33. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimen- tal design and organization, Geosci. Model Dev., 9, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016a.
  34. Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams, D. N.: Towards improved and more routine Earth system model evaluation in CMIP, Earth Syst. Dynam., 7, 813-830, https://doi.org/10.5194/esd-7-813-2016, 2016b.
  35. Fischer, E. M. and Knutti, R.: Robust projections of combined hu- midity and temperature extremes, Nat. Clim. Change, 3, 126- 130, https://doi.org/10.1038/nclimate1682, 2013.
  36. Foster, G. and Rahmstorf, S.: Global temperature evo- lution 1979-2010, Environ. Res. Lett., 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022, 2011.
  37. Fraedrich, K., Blender, R., and Zhu, X.: Continuum climate vari- ability: long-term memory, extremes, and predictability, Int. J. Modern Phys. B, 23, 5403-5416, 2009.
  38. Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplifica- tion to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012.
  39. Fredriksen, H.-B. B. and Rypdal, K.: Spectral Characteristics of Instrumental and Climate Model Surface Temperatures, J. Climate, 29, 1253-1268, https://doi.org/10.1175/JCLI-D-15- 0457.1, 2016.
  40. Giannini, A., Saravanan, R., and Chang, P.: Oceanic Forcing of Sa- hel Rainfall on Interannual to Interdecadal Time Scales, Science, 302, 1027-1030, https://doi.org/10.1126/science.1089357, 2003.
  41. Gillett, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of the Southern Annular Mode, Geophys. Res. Lett., 33, 1-4, https://doi.org/10.1029/2006GL027721, 2006.
  42. Hansen, J., Sato, M., and Ruedy, R.: Perception of cli- mate change, P. Natl. Acad. Sci. USA, 109, E2415-E2423, https://doi.org/10.1073/pnas.1205276109, 2012.
  43. Hasselmann, K.: Stochastic climate models Part I. The- ory, Tellus, 28, 473-485, https://doi.org/10.1111/j.2153- 3490.1976.tb00696.x, 1976.
  44. Hawkins, E.: Our evolving climate: communicating the effects of climate variability, Weather, 66, 175-179, https://doi.org/10.1002/wea.761, 2011.
  45. Held, I. M. and Soden, B. J.: Robust Responses of the Hydro- logical Cycle to Global Warming, J. Climate, 19, 5686-5699, https://doi.org/10.1175/JCLI3990.1, 2006.
  46. Hohenegger, C., Brockhaus, P., Bretherton, C. S., and Schär, C.: The soil moisture-precipitation feedback in simulations with ex- plicit and parameterized convection, J. Climate, 22, 5003-5020, https://doi.org/10.1175/2009JCLI2604.1, 2009.
  47. Holmes, C. R., Woollings, T., Hawkins, E., and de Vries, H.: Ro- bust Future Changes in Temperature Variability under Green- house Gas Forcing and the Relationship with Thermal Advec- tion, J. Climate, 29, 2221-2236, https://doi.org/10.1175/JCLI-D- 14-00735.1, 2016.
  48. Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Ray- mond, C.: A Review of Recent Advances in Research on Ex- treme Heat Events, Curr. Clim. Change Rep., 2, 242-259, https://doi.org/10.1007/s40641-016-0042-x, 2016.
  49. Hsiang, S. M., Burke, M., and Miguel, E.: Quantifying the Influ- ence of Climate on Human Conflict, Science, 341, 1235367, https://doi.org/10.1126/science.1235367, 2013.
  50. Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M., and Cox, P. M.: No increase in global temperature variabil- ity despite changing regional patterns, Nature, 500, 327-30, https://doi.org/10.1038/nature12310, 2013.
  51. Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Re- gional temperatures and precipitation, Science, 269, 676-679, https://doi.org/10.1126/science.269.5224.676, 1995.
  52. Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, J. Mar. Syst., 79, 231-244, https://doi.org/10.1016/j.jmarsys.2009.11.002, 2010.
  53. Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum temperature variability, Nature, 441, 329-32, https://doi.org/10.1038/nature04745, 2006.
  54. IPCC-AR5: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2013.
  55. K. Rehfeld et al.: Past2Future: variability
  56. Karoly, D. J.: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation, Tellus A, 42, 41-50, https://doi.org/10.3402/tellusa.v42i1.11858, 1990.
  57. Katz, R. W. and Brown, B. G.: Extreme events in a changing climate: Variability is more important than averages, Climatic Change, 21, 289-302, https://doi.org/10.1007/BF00139728, 1992.
  58. Kohfeld, K. E. and Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoen- vironmental datasets, Quaternary Sci. Rev., 19, 321-346, https://doi.org/10.1016/S0277-3791(99)00068-2, 2000.
  59. Koutavas, A. and Joanides, S.: El Niño-Southern Oscillation ex- trema in the Holocene and Last Glacial Maximum, Paleoceanog- raphy, 27, PA4208, https://doi.org/10.1029/2012PA002378, 2012.
  60. Kushnir, Y., Robinson, W. A., Chang, P., and Robertson, A. W.: The Physical Basis for Predicting Atlantic Sector Seasonal- to-Interannual Climate Variability, J. Climate, 19, 5949-5970, https://doi.org/10.1175/JCLI3943.1, 2006.
  61. Laepple, T. and Huybers, P.: Global and regional variability in ma- rine surface temperatures, Geophys. Res. Lett., 41, 2528-2534, https://doi.org/10.1002/2014GL059345, 2014a.
  62. Laepple, T. and Huybers, P.: Ocean surface temperature variability: Large model-data differences at decadal and longer periods, P. Natl. Acad. Sci. USA, 41, 2528-2534, https://doi.org/10.1073/pnas.1412077111, 2014b.
  63. Lehmann, J., Coumou, D., and Frieler, K.: Increased record- breaking precipitation events under global warming, Cli- matic Change, 132, 501-515, https://doi.org/10.1007/s10584- 015-1434-y, 2015.
  64. Lenton, T. M., Dakos, V., Bathiany, S., and Scheffer, M.: Observed trends in the magnitude and persistence of monthly temperature variability, Scient. Rep., 7, 5940, https://doi.org/10.1038/s41598- 017-06382-x, 2017.
  65. Li, G., Harrison, S. P., Bartlein, P. J., Izumi, K., and Colin Prentice, I.: Precipitation scaling with temperature in warm and cold cli- mates: An analysis of CMIP5 simulations, Geophys. Res. Lett., 40, 4018-4024, https://doi.org/10.1002/grl.50730, 2013.
  66. Lim, E. P., Hendon, H. H., Boschat, G., Hudson, D., Thompson, D. W., Dowdy, A. J., and Arblaster, J. M.: Australian hot and dry ex- tremes induced by weakenings of the stratospheric polar vortex, Nat. Geosci., 12, 896-901, https://doi.org/10.1038/s41561-019- 0456-x, 2019.
  67. Lofverstrom, M.: A dynamic link between high-intensity precipita- tion events in southwestern North America and Europe at the Last Glacial Maximum, Earth Planet. Sc. Lett., 534, 116081, https://doi.org/10.1016/j.epsl.2020.116081, 2020.
  68. Lorenz, E. N.: Seasonal and Irregular Variations of the Northern Hemisphere Sea-Level Pressure Profile, J. Meteorol., 8, 52-59, https://doi.org/10.1175/1520- 0469(1951)008<0052:saivot>2.0.co;2, 1951.
  69. Lu, Z., Liu, Z., Zhu, J., and Cobb, K. M.: A Review of Paleo El Niño-Southern Oscillation, Atmosphere, 9, 130, https://doi.org/10.3390/atmos9040130, 2018.
  70. Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Ed- wards, R. L., Frisia, S., Hof, F., and Müller, W.: North At- lantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat. Commun., 6, 27-32, https://doi.org/10.1038/ncomms7344, 2015.
  71. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific Interdecadal Climate Oscil- lation with Impacts on Salmon Production, B. Am. Me- teorol. Soc., 78, 1069-1079, https://doi.org/10.1175/1520- 0477(1997)078<1069:APICOW>2.0.CO;2, 1997.
  72. Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of regional and global tempera- ture for the past 11,300 years, Science, 339, 1198-201, https://doi.org/10.1126/science.1228026, 2013. MARGO project members: Constraints on the magnitude and pat- terns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127-132, https://doi.org/10.1038/ngeo411, 2009.
  73. Marshall, G. J.: Trends in the Southern Annular Mode from observations and reanalyses, J. Cli- mate, 16, 4134-4143, https://doi.org/10.1175/1520- 0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
  74. Meehl, G. A. and Hu, A.: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for asso- ciated multidecadal Pacific Sea surface temperature anomalies, J. Climate, 19, 1605-1623, https://doi.org/10.1175/JCLI3675.1, 2006.
  75. Myhre, G., Samset, B. H., Hodnebrog, O., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P. M., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J. F., Olivié, D., Richard- son, T. B., Shawki, D., Shindell, D., Shine, K. P., Stjern, C. W., Takemura, T., and Voulgarakis, A.: Sensible heat has signif- icantly affected the global hydrological cycle over the historical period, Nat. Commun., 9, 1922, https://doi.org/10.1038/s41467- 018-04307-4, 2018.
  76. Nigam, S.: Teleconnections, in: Encyclopedia of Atmospheric Sci- ences, Academic Press, London, 2243-2269, 2003.
  77. O'Gorman, P. A., Allan, R. P., Byrne, M. P., and Previdi, M.: Energetic Constraints on Precipitation Under Climate Change, Surv. Geophys., 33, 585-608, https://doi.org/10.1007/s10712- 011-9159-6, 2011.
  78. Olonscheck, D. and Notz, D.: Consistently estimating internal cli- mate variability from climate model simulations, J. Climate, 30, 9555-9573, https://doi.org/10.1175/JCLI-D-16-0428.1, 2017.
  79. Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., and Kothavala, Z.: Last Glacial Maximum and Holocene Climate in CCSM3, J. Climate, 19, 2526-2544, https://doi.org/10.1175/JCLI3748.1, 2006.
  80. Oyarzún, D. and Brierley, C. M.: The future of coastal upwelling in the Humboldt current from model projections, Clim. Dynam., 52, 599-615, https://doi.org/10.1007/s00382-018-4158-7, 2019.
  81. Pages2k-Consortium: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era, Nat. Geosci., 12, 643-649, https://doi.org/10.1038/s41561- 019-0400-0, 2019.
  82. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sander- son, B. M.: Precipitation variability increases in a warmer cli- mate, Scient. Rep., 7, 17966, https://doi.org/10.1038/s41598- 017-17966-y, 2017.
  83. Pfleiderer, P., Schleussner, C. F., Kornhuber, K., and Coumou, D.: Summer weather becomes more persistent in a 2 • C world, Nat. Climate Change, 9, 666-671, https://doi.org/10.1038/s41558- 019-0555-0, 2019.
  84. Philander, S. G. H.: El Niño Southern Oscillation phenomena, Na- ture, 302, 295-301, https://doi.org/10.1038/302295a0, 1983.
  85. Phillips, A. S., Deser, C., and Fasullo, J.: Evaluating Modes of Vari- ability in Climate Models, Eos Trans. Am. Geophys. Union, 95, 453-455, https://doi.org/10.1002/2014EO490002, 2014. PMIP3: PMIP3 Experimental Design, available at: https://wiki.lsce. ipsl.fr/pmip3/doku.php/pmip3:design:final (last access: 1 De- cember 2019), 2010.
  86. Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter- decadal modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319-324, https://doi.org/10.1007/s003820050284, 1999. Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K.: Robust twenty-first-century projections of El Niño and related precipitation variability, Nature, 502, 541-545, https://doi.org/10.1038/nature12580, 2013.
  87. Qin, D., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Kingdom, U.: Annex III: Glossary, in: Climate Change 2013 -The Physical Science Basis, edited by Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1447-1466, https://doi.org/10.1017/CBO9781107415324.031, 2014.
  88. Rehfeld, K. and Laepple, T.: Warmer and wetter or warmer and dryer? Observed versus simulated covariability of Holocene tem- perature and rainfall in Asia, Earth Planet. Sc. Lett., 436, 1-9, https://doi.org/10.1016/j.epsl.2015.12.020, 2016.
  89. Rehfeld, K., Trachsel, M., Telford, R. R. J., and Laepple, T.: As- sessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world, Clim. Past, 12, 2255- 2270, https://doi.org/10.5194/cp-12-2255-2016, 2016.
  90. Rehfeld, K., Münch, T., Ho, S. L., and Laepple, T.: Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene, Nature, 554, 356-359, https://doi.org/10.1038/nature25454, 2018.
  91. Rhines, A. and Huybers, P.: Frequent summer temperature extremes reflect changes in the mean, not the variance, P. Natl. Acad. Sci. USA, 110, E546, https://doi.org/10.1073/pnas.1218748110, 2013.
  92. Saji, N., Goswami, B., Vinayachandran, P., and Yamagata, T.: A dipole mode in the Tropical Ocean, Nature, 401, 360-363, 1999.
  93. Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, O., An- drews, T., Boucher, O., Faluvegi, G., Fläschner, D., Kasoar, M., Kharin, V., Kirkevag, A., Lamarque, J.-F., Olivie, D., Richard- son, T. B., Shindell, D., Takemura, T., and Voulgarakis, A.: Weak hydrological sensitivity to temperature change over land, inde- pendent of climate forcing, npj Clim. Atmos. Sci., 1, 20173, https://doi.org/10.1038/s41612-017-0005-5, 2018.
  94. Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332- 336, https://doi.org/10.1038/nature02300, 2004.
  95. Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.- B., and Yiou, P.: Using palaeo-climate comparisons to con- strain future projections in CMIP5, Clim. Past, 10, 221-250, https://doi.org/10.5194/cp-10-221-2014, 2014.
  96. Schneider, N. and Cornuelle, B. D.: The forcing of the Pacific Decadal Oscillation, J. Climate, 18, 4355-4373, https://doi.org/10.1175/JCLI3527.1, 2005.
  97. Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves favour particular regional weather extremes, Nat. Clim. Change, 4, 704-709, https://doi.org/10.1038/nclimate2271, 2014.
  98. Seager, R., Osborn, T. J., Kushnir, Y., Simpson, I. R., Naka- mura, J., and Liu, H.: Climate variability and change of mediterranean-type climates, J. Climate, 32, 2887-2915, https://doi.org/10.1175/JCLI-D-18-0472.1, 2019.
  99. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., and Willis, K. J.: Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531, 229-232, https://doi.org/10.1038/nature16986, 2016.
  100. Servain, J., Wainer, I., McCreary, J. P., and Dessier, A.: Relation- ship between the equatorial and meridional modes of climatic variability in the tropical Atlantic, Geophys. Res. Lett., 26, 485- 488, https://doi.org/10.1029/1999GL900014, 1999.
  101. Shakun, J. D. and Carlson, A. E.: A global perspec- tive on Last Glacial Maximum to Holocene cli- mate change, Quaternary Sci. Rev., 29, 1801-1816, https://doi.org/10.1016/j.quascirev.2010.03.016, 2010.
  102. Stenseth, N. C.: Ecological Effects of Climate Fluctuations, Sci- ence, 297, 1292-1296, https://doi.org/10.1126/science.1071281, 2002.
  103. Stephenson, D. B., Wanner, H., Brönnimann, S., and Luter- bacher, J.: The history of scientific research on the north atlantic oscillation, Geophys. Monogr. Ser., 134, 37-50, https://doi.org/10.1029/134GM02, 2003.
  104. Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93, 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
  105. Thompson, D. W. and Wallace, J. M.: Annular modes in the extratropical circulation. Part I: Month-to-month variabil- ity, J. Climate, 13, 1000-1016, https://doi.org/10.1175/1520- 0442(2000)013<1000:AMITEC>2.0.CO;2, 2000.
  106. Thompson, D. W., Barnes, E. A., Deser, C., Foust, W. E., and Phillips, A. S.: Quantifying the role of internal climate vari- ability in future climate trends, J. Climate, 28, 6443-6456, https://doi.org/10.1175/JCLI-D-14-00830.1, 2015.
  107. Thomson, D.: Time series analysis of Holocene climate data, Philos. T. Roy. Soc. A, 330, 601-616, 1990.
  108. Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., and Roeckner, E.: Increased El Nino frequency, Nature, 98, 694- 697, https://doi.org/10.1038/19505, 1999.
  109. Trenberth, K. E.: The Definition of El Niño, B. Am. Me- teorol. Soc., 78, 2771-2777, https://doi.org/10.1175/1520- 0477(1997)078<2771:TDOENO>2.0.CO;2, 1997.
  110. Trenberth, K. E. and Fasullo, J. T.: Tracking Earth's Energy: From El Niño to Global Warming, Surv. Geophysics, 33, 413-426, https://doi.org/10.1007/s10712-011-9150-2, 2012.
  111. Trenberth, K. E. and Shea, D. J.: Relationships between precip- itation and surface temperature, Geophys. Res. Lett., 32, 2-5, https://doi.org/10.1029/2005GL022760, 2005.
  112. UCAR/NCAR: CVDP | Climate Variability Diagnostics Package, available at: http://www.cesm.ucar.edu/working\_groups/CVC/ cvdp/, last access: 1 December 2019.
  113. Vidale, P. L., Lüthi, D., Wegmann, R., and Schär, C.: Eu- ropean summer climate variability in a heterogeneous multi-model ensemble, Climatic Change, 81, 209-232, https://doi.org/10.1007/s10584-006-9218-z, 2007.
  114. K. Rehfeld et al.: Past2Future: variability
  115. Vimont, D. J. and Kossin, J. P.: The Atlantic Meridional Mode and hurricane activity, Geophys. Res. Lett., 34, 1-5, https://doi.org/10.1029/2007GL029683, 2007.
  116. Walker, G. T. and Bliss, E.: World Weather V, Memoir. Roy. Mete- orol. Soc., 4, 53-84, https://doi.org/10.2307/3901664, 1932.
  117. Wallace, J. M., Deser, C., Smoliak, B. V., and Phillips, A. S.: At- tribution of Climate Change in the Presence of Internal Vari- ability, in: World Scientific Series on Asia-Pacific Weather and Climate, vol. 6, 1-29, World Scientific Publishing, London, UK, https://doi.org/10.1142/9789814579933\_0001, 2015.
  118. Wanner, H., Mercolli, L., Grosjean, M., and Ritz, S. P.: Holocene climate variability and change; a data-based review, J. Geol. Soc., 172, 254-263, https://doi.org/10.1144/jgs2013-101, 2015.
  119. Webster, P. J., Moore, A., Loschnigg, J. P., and Leben, R. R.: Cou- pled oceanic-atmoshperic dynamics in the Indian Ocean dur- ing 1997-1998, Nature, 401, 356-360, 1999.
  120. Xie, S. P. and Carton, J. A.: Tropical atlantic variability: Pat- terns, mechanisms, and impacts, in: Earth Climate: The Ocean- Atmosphere Interaction, vol. 147, edited by: Wang, C., Xie, S.- P., and Carton, J. A., American Geophysical Union, Washington, D.C., 121-142, https://doi.org/10.1029/147GM07, 2004.
  121. Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., Hawkins, E., Johnson, N. C., Cassou, C., Gian- nini, A., and Watanabe, M.: Towards predictive understanding of regional climate change, Nat. Clim. Change, 5, 921-930, https://doi.org/10.1038/nclimate2689, 2015.
  122. Zebiak, S. E.: Air-sea interaction in the equatorial Atlantic re- gion, J. Climate, 6, 1567-1568, https://doi.org/10.1175/1520- 0442(1993)006<1567:AIITEA>2.0.CO;2, 1993.
  123. Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas, R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO variability at the LGM revealed by an isotope- enabled Earth system model, Geophys. Res. Lett., 44, 6984- 6992, https://doi.org/10.1002/2017GL073406, 2017.