CD, UV, and In Silico Insights on the Effect of 1,3-Bis(1′-uracilyl)-2-propanone on Serum Albumin Structure (original) (raw)

Biomolecules

1,3-diaryl-2-propanone derivatives are synthetic compounds used as building blocks for the realization not only of antimicrobial drugs but also of new nanomaterials thanks to their ability to self-assemble in solution and interact with nucleopeptides. However, their ability to interact with proteins is a scarcely investigated theme considering the therapeutic importance that 1,3-diaryl-2-propanones could have in the modulation of protein-driven processes. Within this scope, we investigated the protein binding ability of 1,3-bis(1′-uracilyl)-2-propanone, which was previously synthesized in our laboratory utilizing a Dakin–West reaction and herein indicated as U2O, using bovine serum albumin (BSA) as the model protein. Through circular dichroism (CD) and UV spectroscopy, we demonstrated that the compound, but not the similar thymine derivative T2O, was able to alter the secondary structure of the serum albumin leading to significant consequences in terms of BSA structure with respect ...

Luminescence, circular dichroism and in silico studies of binding interaction of synthesized naphthylchalcone derivatives with bovine serum albumin

Luminescence, 2017

Chalcones possess various biological properties, for example, antimicrobial, anti-inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using 1 H NMR 13 C NMR, Fou-rier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein-drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non-covalent binding interactions in the protein-ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site-specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex.

Combined spectroscopic and molecular docking study of binding interaction of pyrano [3, 2-f] quinoline derivatives with bovine serum albumins and its application in mammalian cell imaging

The interaction between pyrano [3, 2-f] quinoline derivatives (TPQ) and bovine serum albumin (BSA) was studied using spectroscopic techniques. The TPQ quench the fluorescence of BSA through dynamic quenching. According to Van't Hoff equation, the thermodynamic parameters were calculated and which indicated hydrogen bonds and van der waals forces played a prime role in stabilizing the BSA–TPQ complexes. Also, the average binding distance (r) and the critical energy transfer distance (R o) between TPQ and BSA were also evaluated according to Förster's non-radiative energy transfer (FRET) theory. What is more, UV-visible and circular dichroism results showed that the addition of TPQ changed the secondary structure of BSA and led to a reduction in content α-helix (%) content. It was also observed that TPQ shows cell staining property to the cultured HeLa cell line. Theoretical docking study of interaction between BSA and TPQ also supported the experimental results. All the results suggested that BSA experienced substantial conformational changes induced by TPQ; this may be useful to study synthetic organic molecules for their application as pharmaceuticals.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.