Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of β-Lactamase Inhibitors (original) (raw)

Abstract

Commercial carbapenem antibiotics are being used to treat multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis. Like other β-lactams, carbapenems are irreversible inhibitors of serine D,D-transpeptidases involved in peptidoglycan biosynthesis. In addition to D,D-transpeptidases, mycobacteria also utilize nonhomologous cysteine L,D-transpeptidases (Ldts) to crosslink the stem peptides of peptidoglycan, and carbapenems form longlived acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications of a common scaffold. This study describes the synthesis of a series of atypical, C5α modifications of the carbapenem scaffold, microbiological evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well as acylation of an important mycobacterial target Ldt, Ldt Mt2. In vitro evaluation of these C5α-modified carbapenems revealed compounds with standalone (i.e., in the absence of a β-lactamase inhibitor) minimum inhibitory concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill kinetics assays showed better killing (2−4 log decrease) of Mtb and Mab with lower concentrations of compound 10a as compared to meropenem. Although susceptibility of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry revealed that 10a acylates Ldt Mt2 at a rate comparable to meropenem, but subsequently undergoes an unprecedented carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic fragmentation of the Ldt Mt2 acyl-enzymes is proposed. The observed activity illustrates the potential of novel atypical carbapenems as prospective candidates for treatment of Mtb and Mab infections.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (97)

  1. Migliori, G. B., Tiberi, S., Zumla, A., Petersen, E., Chakaya, J. M., Wejse, C., Munoz Torrico, M., Duarte, R., Alffenaar, J. W., Schaaf, H. S., Marais, B. J., Cirillo, D. M., Alagna, R., Rendon, A., Pontali, E., Piubello, A., Figueroa, J., Ferlazzo, G., Garcia-Basteiro, A., Centis, R., Visca, D., D'Ambrosio, L., Sotgiu, G., et al. (2020) MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int. J. Infect. Dis. 92, S15-S25.
  2. Lee, M.-R., Sheng, W.-H., Hung, C.-C., Yu, C.-J., Lee, L.-N., and Hsueh, P.-R. (2015) Mycobacterium abscessus complex infections in humans. Emerging Infect. Dis. 21, 1638-1646.
  3. Chen, J., Zhao, L., Mao, Y., Ye, M., Guo, Q., Zhang, Y., Xu, L., Zhang, Z., Li, B., and Chu, H. (2019) Clinical Efficacy and Adverse Effects of Antibiotics Used to Treat Mycobacterium abscessus Pulmonary Disease. Front. Microbiol. 10, 1977.
  4. Skripconoka, V., Danilovits, M., Pehme, L., Tomson, T., Skenders, G., Kummik, T., Cirule, A., Leimane, V., Kurve, A., Levina, K., Geiter, L. J., Manissero, D., and Wells, C. D. (2013) Delamanid improves outcomes and reduces mortality in multidrug- resistant tuberculosis. Eur. Respir. J. 41, 1393-1400.
  5. Thakare, R., Soni, I., Dasgupta, A., and Chopra, S. (2015) Delamanid for the treatment of pulmonary multidrug-resistant tuberculosis. Drugs Today 51, 117-123.
  6. Robinson, H. J. (1943) Toxicity and efficacy of penicillin. J. Pharmacol. 77, 70-79.
  7. Smith, M. I., and Emmart, E. W. (1944) Action of penicillin extracts in experimental tuberculosis. Public Health Rep. 59, 417-423.
  8. Bil'ko, I. P., Mil'chenko, K. P., Ginzburg, T. S., and Sokalo, S. V. (1982) Experimental study of the antibiotic activity of cefuroxime. Antibiotiki 27, 595-598.
  9. Iland, C. N., and Baines, S. (1949) The effect of penicillin on the tubercle bacillus; tubercle penicillinase. J. Pathol. Bacteriol. 61, 329- 335.
  10. Kasik, J. E. (1964) Activity of some semisynthetic penicillins on Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 10, 315- 320.
  11. Vinogradova, T. I., Aleksandrova, A. E., and Tschegoleva, R. A. (1993) Cephalosporins as possible methods of etiotropic therapy of tuberculosis. Probl Tuberk, 45-48.
  12. Chambers, H. F., Turner, J., Schecter, G. F., Kawamura, M., and Hopewell, P. C. (2005) Imipenem for treatment of tuberculosis in mice and humans. Antimicrob. Agents Chemother. 49, 2816-2821.
  13. Sorg, T. B., and Cynamon, M. H. (1987) Comparison of four β-lactamase inhibitors in combination with ampicillin against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 19, 59-64.
  14. Chambers, H. F., Moreau, D., Yajko, D., Miick, C., Wagner, c., Hackbarth, C., Kocagoz, S., Rosenberg, E., Hadley, W. K., and Nikaido, H. (1995) Can penicillins and other β-lactam antibiotics be used to treat tuberculosis? Antimicrob. Agents Chemother. 39, 2620- 2624.
  15. Hackbarth, C. J., Unsal, I., and Chambers, H. F. (1997) Cloning and sequence analysis of a class A β-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 41, 1182-1185.
  16. Voladri, R. K., Lakey, D. L., Hennigan, S. H., Menzies, B. E., Edwards, K. M., and Kernodle, D. S. (1998) Recombinant expression and characterization of the major beta-lactamase of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42, 1375-1381.
  17. Hugonnet, J. E., and Blanchard, J. S. (2007) Irreversible inhibition of the mycobacterium tuberculosis beta-lactarnase by clavulanate. Biochemistry 46, 11998-12004.
  18. Zhang, D., Wang, Y. F., Lu, J., and Pang, Y. (2016) In Vitro Activity of beta-Lactams in Combination with beta-Lactamase Inhibitors against Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrob. Agents Chemother. 60, 393-399.
  19. Solapure, S., Dinesh, N., Shandil, R., Ramachandran, V., Sharma, S., Bhattacharjee, D., Ganguly, S., Reddy, J., Ahuja, V., Panduga, V., Parab, M., Vishwas, K. G., Kumar, N., Balganesh, M., and Balasubramanian, V. (2013) In vitro and in vivo efficacy of beta- lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57, 2506-2510.
  20. Hugonnet, J.-E., Tremblay, L. W., Boshoff, H. I., Barry, C. E., 3rd, and Blanchard, J. S. (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323 (5918), 1215-8.
  21. Soroka, D., Dubee, V., Soulier-Escrihuela, O., Cuinet, G., Hugonnet, J.-E., Gutmann, L., Mainardi, J.-L., and Arthur, M. (2014) Characterization of broad-spectrum Mycobacterium abscessus class A β-lactamase. J. Antimicrob. Chemother. 69, 691-696.
  22. Dubee, V., Bernut, A., Cortes, M., Lesne, T., Dorchene, D., Lefebvre, A.-L., Hugonnet, J.-E., Gutmann, L., Mainardi, J.-L., Herrmann, J.-L., Gaillard, J.-L., Kremer, L., and Arthur, M. (2014) β-lactamase inhibition by avibactam in Mycobacterium abscessus. J. Antimicrob. Chemother. 70, 1051-1058.
  23. Le Run, E., Atze, H., Arthur, M., and Mainardi, J.-L. (2019) Impact of relebactam-mediated inhibition of Mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. J. Antimicrob. Chemother. 75, 379-383.
  24. Story-Roller, E., Maggioncalda, E. C., and Lamichhane, G. (2019) Synergistic efficacy of β-lactam combinations against Mycobacterium abscessus pulmonary infection in mice. Antimicrob. Agents Chemother. 63, e00614-e00619.
  25. Kaushik, A., Ammerman, N. C., Lee, J., Martins, O., Kreiswirth, B. N., Lamichhane, G., Parrish, N. M., and Nuermberger, E. L. (2019) In Vitro Activity of the New beta-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with beta-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob. Agents Chemother. 63, 1-25.
  26. Pandey, R., Chen, L., Manca, C., Jenkins, S., Glaser, L., Vinnard, C., Stone, G., Lee, J., Mathema, B., Nuermberger, E. L., Bonomo, R. A., and Kreiswirth, B. N. (2019) Dual beta-Lactam Combinations Highly Active against Mycobacterium abscessus Complex In Vitro. mBio 10, e02895-18.
  27. Kaushik, A., Gupta, C., Fisher, S., Story-Roller, E., Galanis, C., Parrish, N., and Lamichhane, G. (2017) Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant Mycobacterium abscessus. Future Microbiol. 12, 473-480.
  28. Kaushik, A., Makkar, N., Pandey, P., Parrish, N., Singh, U., and Lamichhane, G. (2015) Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob. Agents Chemother. 59, 6561-6567.
  29. Kumar, P., Chauhan, V., Silva, J. R. A., Lameira, J., d'Andrea, F.
  30. B., Li, S. G., Ginell, S. L., Freundlich, J. S., Alves, C. N., Bailey, S., Cohen, K. A., and Lamichhane, G. (2017) Mycobacterium abscessus L,D-Transpeptidases Are Susceptible to Inactivation by Carbapenems and Cephalosporins but Not Penicillins. Antimicrob. Agents Chemother. 61, e00866-17.
  31. Le Run, E., Arthur, M., and Mainardi, J. L. (2018) In Vitro and Intracellular Activity of Imipenem Combined with Rifabutin and Avibactam against Mycobacterium abscessus. Antimicrob. Agents Chemother. 62, e00623-18.
  32. Lopeman, R. C., Harrison, J., Rathbone, D. L., Desai, M., Lambert, P. A., and Cox, J. A. G. (2020) Effect of Amoxicillin in combination with Imipenem-Relebactam against Mycobacterium abscessus. Sci. Rep. 10, 928-939.
  33. Guo, Y., Cao, X., Yu, J., Zhan, Q., Yang, J., Wu, X., Wan, B., Liu, Y., and Yu, F. (2020) Antimicrobial susceptibility of Mycobacterium abscessus complex clinical isolates from a Chinese Tertiary Hospital. Infect. Drug Resist. 13, 2001-2010.
  34. Takei, S., Ihara, H., Togo, S., Nakamura, A., Fujimoto, Y., Watanabe, J., Kurokawa, K., Shibayama, K., Sumiyoshi, I., Ochi, Y., Iwai, M., Okabe, T., Chonan, M., Misawa, S., Ohsaka, A., and Takahashi, K. (2020) The synergetic effect of Imipenem-clarithro- mycin combination in the Mycobacteroides abscessus complex. BMC Microbiol. 20, 316.
  35. Batchelder, H. R., Story-Roller, E., Lloyd, E. P., Kaushik, A., Bigelow, K. M., Maggioncalda, E. C., Nuermberger, E. L., Lamichhane, G., and Townsend, C. A. (2020) Development of a penem antibiotic against Mycobacteroides abscessus. Commun. Biol. 3, 741. (35) Mahapatra, S., Scherman, H., Brennan, P. J., and Crick, D. C. (2005) N glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J. Bacteriol. 187, 2341-2347.
  36. Maitra, A., Munshi, T., Healy, J., Martin, L. T., Vollmer, W., Keep, N. H., and Bhakta, S. (2019) Cell wall peptidoglycan in Mycobacterium tuberculosis: an Achilles' heel for the TB-causing pathogen. FEMS Microbiol. Rev. 43, 548-575.
  37. Lavollay, M., Fourgeaud, M., Herrmann, J. L., Dubost, L., Marie, A., Gutmann, L., Arthur, M., and Mainardi, J. L. (2011) The Peptidoglycan of Mycobacterium abscessus Is Predominantly Cross- Linked by L,D-Transpeptidases. J. Bacteriol. 193, 778-782.
  38. Wietzerbin, J., Das, B. C., Petit, J. F., Lederer, E., Leyh-Bouille,
  39. M., and Ghuysen, J. M. (1974) Occurrence of D-alanyl-(D)-meso- diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry 13, 3471-3476.
  40. Mainardi, J.-L., Fourgeaud, M., Hugonnet, J.-E., Dubost, L., Brouard, J.-P., Ouazzani, J., Rice, L. B., Gutmann, L., and Arthur, M.
  41. A Novel Peptidoglycan Cross-linking Enzyme for a β-Lactam- resistant Transpeptidation Pathway. J. Biol. Chem. 280, 38146-38152.
  42. Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Riegel, P., Gutmann, L., and Mainardi, J.-L. (2009) The β-lactam- sensitive D,D-carboxypeptidase activity of Pbp4 controls the L,D and D,D transpeptidation pathways in Corynebacterium jeikeium. Mol. Microbiol. 74, 650-661.
  43. Sanders, A. N., and Pavelka, M. S. (2013) Phenotypic analysis of Escherichia coli mutants lacking L,D-transpeptidases. Microbiology (London, U. K.) 159, 1842-1852.
  44. Peltier, J., Courtin, P., El Meouche, I., Lemee, L., Chapot- Chartier, M.-P., and Pons, J.-L. (2011) Clostridium difficile Has an Original Peptidoglycan Structure with a High Level of N- Acetylglucosamine Deacetylation and Mainly 3-3 Cross-links. J. Biol. Chem. 286, 29053-29062.
  45. Bailey, J., Cass, J., Gasper, J., Ngo, N.-D., Wiggins, P., and Manoil, C. (2019) Essential gene deletions producing gigantic bacteria. PLoS Genet. 15, No. e1008195.
  46. Kang, K. N., Kazi, M. I., Bovermann, H., Ausman, J., Boutte, C.
  47. C., Boll, J. M., Biboy, J., Vollmer, W., and Gray, J. (2021) Septal Class A Penicillin-Binding Protein Activity and ld-Transpeptidases Mediate Selection of Colistin-Resistant Lipooligosaccharide-Deficient Acine- tobacter baumannii. mBio 12, No. e02185-20.
  48. Kim, H. S., Kim, J., Im, H. N., Yoon, J. Y., An, D. R., Yoon, H. J., Kim, J. Y., Min, H. K., Kim, S.-J., Lee, J. Y., Han, B. W., and Suh, S. W. (2013) Structural basis for the inhibition ofMycobacterium tuberculosisL,D-transpeptidase by Meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 420-431.
  49. Kumar, P., Kaushik, A., Lloyd, E. P., Li, S.-G., Mattoo, R., Ammerman, N. C., Bell, D. T., Perryman, A. L., Zandi, T. A., Ekins, S., Ginell, S. L., Townsend, C. A., Freundlich, J. S., and Lamichhane, G. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 13, 54-61.
  50. Dubée, V., Triboulet, S., Mainardi, J.-L., Etheve-Quelquejeu,
  51. M., Gutmann, L., Marie, A., Dubost, L., Hugonnet, J.-E., and Arthur, M. (2012) Inactivation of Mycobacterium tuberculosis l,d-trans- peptidase LdtMt 1 by carbapenems and cephalosporins. Antimicrob. Agents Chemother. 56 (8), 4189-4195.
  52. Kumar, P., Arora, K., Lloyd, J. R., Lee, Y., Nair, V., Fischer, E., Boshoff, H. I. M., and Barry, C. E. (2012) Meropenem inhibits D,D- carboxypeptidase activity in Mycobacterium tuberculosis. Mol. Microbiol. 86, 367-381.
  53. Cordillot, M., Dubée, V., Triboulet, S., Dubost, L., Marie, A., Hugonnet, J.-E., Arthur, M., and Mainardi, J.-L. (2013) In vitro cross- linking of Mycobacterium tuberculosis peptidoglycan by L,D- transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob. Agents Chemother. 57, 5940-5945.
  54. Erdemli, S. B., Gupta, R., Bishai, W. R., Lamichhane, G., Amzel, L. M., and Bianchet, M. A. (2012) Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D- transpeptidase 2. Structure (Oxford, U. K.) 20, 2103-2115.
  55. Gupta, R., Lavollay, M., Mainardi, J.-L., Arthur, M., Bishai, W.
  56. R., and Lamichhane, G. (2010) The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med. 16, 466-469.
  57. Dousa, K. M., Kurz, S. G., Taracila, M. A., Bethel, C. R., Barnes, M. D., Bonomo, R. A., Taracila, M. A., Barnes, M. D., Bonomo, R. A., Bonfield, T., Selvaraju, S., Abdelhamed, A. M., Kreiswirth, B. N., Boom, W. H., Kasperbauer, S. H., Daley, C. L., Bonomo, R. A., Bonomo, R. A., Bonomo, R. A., Bonomo, R. A., Bonomo, R. A., Bonomo, R. A., and Bonomo, R. A. (2020) Insights into the L,D- transpeptidases and D,D-carboxypeptidase of Mycobacterium ab- scessus: ceftaroline, imipenem and novel diazabicyclooctanes inhibitors. Antimicrob. Agents Chemother. 64, e00098-20.
  58. WHO. (2019) WHO Guidelines Approved by the Guidelines Review Committee. In WHO Consolidated Guidelines on Drug- Resistant Tuberculosis Treatment, World Health Organization, Geneva.
  59. Sotgiu, G., D'Ambrosio, L., Centis, R., Tiberi, S., Esposito, S., Dore, S., Spanevello, A., and Migliori, G. B. (2016) Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a system- atic review. Int. J. Mol. Sci. 17, 373.
  60. Tiberi, S., Sotgiu, G., D'Ambrosio, L., Centis, R., Abdo Arbex, M., Arrascue, E. A., Alffenaar, J. W., Caminero, J. A., Gaga, M., Gualano, G., Skrahina, A., Solovic, I., Sulis, G., Tadolini, M., Guizado, V. A., De Lorenzo, S., Arias, A. J. R., Scardigli, A., Akkerman, O. W., Aleksa, A., Artsukevich, J., Auchynka, V., Bonini, E. H., Marin, F. A. C., Lopez, L. C., de Vries, G., Dore, S., Kunst, H., Matteelli, A., Moschos, C., Palmieri, F., Papavasileiou, A., Payen, M.-C., Piana, A., Spanevello, A., Vasquez, D. V., Viggiani, P., White, V., Zumla, A., and Migliori, G. B. (2016) Comparison of effectiveness and safety of imipenem/clavulanate-versus Meropenem/clavulanate-containing regimens in the treatment of MDR-and XDR-TB. Eur. Respir. J. 47, 1758-1766.
  61. Tiberi, S., Payen, M.-C., Sotgiu, G., D'Ambrosio, L., Guizado, V. A., Alffenaar, J. W., Arbex, M. A., Caminero, J. A., Centis, R., De Lorenzo, S., Gaga, M., Gualano, G., Arias, A. J. R., Scardigli, A., Skrahina, A., Solovic, I., Sulis, G., Tadolini, M., Akkerman, O. W., Arrascue, E. A., Aleska, A., Avchinko, V., Bonini, E. H., Marin, F. A. C., Lopez, L. C., de Vries, G., Dore, S., Kunst, H., Matteelli, A., Moschos, C., Palmieri, F., Papavasileiou, A., Spanevello, A., Vasquez, D. V., Viggiani, P., White, V., Zumla, A., and Migliori, G. B. (2016) Effectiveness and safety of Meropenem/clavulanate-containing regimens in the treatment of MDR-and XDR-TB. Eur. Respir. J. 47, 1235-1243.
  62. Tiberi, S., D'Ambrosio, L., De Lorenzo, S., Viggiani, P., Centis, R., Sotgiu, G., Alffenaar, J. W. C., and Migliori, G. B. (2016) Ertapenem in the treatment of multidrug-resistant tuberculosis: first clinical experience. Eur. Respir. J. 47, 333-336.
  63. Haworth, C. S., Floto, R. A., Banks, J., Capstick, T., Fisher, A. J., Gorsuch, T., Laurenson, I. F., Leitch, A., Loebinger, M. R., Wilson, R., Milburn, H. J., Nightingale, M., Ormerod, P., Shingadia, D., Smith, D., Whitehead, N., and Floto, R. A. (2017) British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72, ii1-ii64.
  64. Flume, P. A. (2016) US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. J. Cystic Fibrosis 15, 139-140.
  65. Kwak, N., Park, J., Yim, J.-J., Dalcolmo, M. P., Gayoso, R., Daley, C. L., Eather, G., Hasegawa, N., Jhun, B. W., Koh, W.-J., Namkoong, H., Thomson, R., van Ingen, J., and Zweijpfenning, S. M. H. (2019) Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur. Respir. J. 54, 1801991.
  66. Elshamy, A. A., and Aboshanab, K. M. (2020) A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci. OA 6, FSO438.
  67. Bonomo, R. A., Burd, E. M., Conly, J., Limbago, B. M., Poirel, L., Segre, J. A., and Westblade, L. F. (2018) Carbapenemase- producing organisms: a global scourge. Clin. Infect. Dis. 66, 1290- 1297.
  68. Bush, K. (2018) Past and Present Perspectives on β- Lactamases. Antimicrob. Agents Chemother. 62, e01076-18.
  69. Codjoe, F. S., Codjoe, F. S., and Donkor, E. S. (2018) Carbapenem Resistance: A Review. Med. Sci. 6, 1.
  70. Naas, T., Dortet, L., and Iorga, B. I. (2016) Structural and functional aspects of class A carbapenemases. Curr. Drug Targets 17, 1006-1028.
  71. Docquier, J.-D., and Mangani, S. (2016) Structure-Function Relationships of Class D Carbapenemases. Curr. Drug Targets 17, 1061-1071.
  72. Jeon, J. H., Lee, J. H., Lee, J. J., Park, K. S., Karim, A. M., Lee, C.-R., Jeong, B. C., and Lee, S. H. (2015) Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int. J. Mol. Sci. 16, 9654-9692.
  73. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., and Bonomo, R. A. (2011) Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55, 4943-4960.
  74. Onoue, H., and Narukawa, Y. (1989) Synthesis and antibacterial activity of 5-methylcarbapenems. J. Antibiot. 42, 1100- 13. (70) Iannazzo, L., Soroka, D., Triboulet, S., Fonvielle, M., Compain, F., Dubée, V., Mainardi, J. L., Hugonnet, J. E., Braud, E., Arthur, M., and Etheve-Quelquejeu, M. (2016) Routes of Synthesis of Carbapenems for Optimizing Both the Inactivation of L,D-Trans- peptidase LdtMt1 of Mycobacterium tuberculosis and the Stability toward Hydrolysis by β-Lactamase BlaC. J. Med. Chem. 59, 3427- 3438.
  75. Murahash, S., Saito, T., Naota, T., Kumobayashi, H., and Akutagawa, S. (1991) Ruthenium-catalyzed oxidation of β-lactams with molecular oxygen and aldehydes. Tetrahedron Lett. 32, 5991- 5994.
  76. Ueda, Y., and Roberge, G. (1986) Carbapenem intermediates. GB2173801A.
  77. Soroka, D., Ourghanlian, C., Compain, F., Fichini, M., Dubee, V., Mainardi, J.-L., Hugonnet, J.-E., and Arthur, M. (2016) Inhibition of β-lactamases of mycobacteria by avibactam and clavulanate. J. Antimicrob. Chemother. 72, 1081-1088.
  78. Lohans, C. T., Chan, H. T. H., Malla, T. R., Kumar, K., Kamps, J. J. A. G., McArdle, D. J. B., van Groesen, E., de Munnik, M., Tooke, C. L., Spencer, J., Paton, R. S., Brem, J., and Schofield, C. J. (2019) Non-Hydrolytic β-Lactam Antibiotic Fragmentation by l,d-Trans- peptidases and Serine β-Lactamase Cysteine Variants. Angew. Chem., Int. Ed. 58, 1990-1994.
  79. Chow, C., Xu, H., and Blanchard, J. S. (2013) Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and Meropenem by β-lactamase from Mycobacterium tuberculosis. Biochemistry 52, 4097-4104.
  80. Cheng, Y., Xie, H., Sule, P., Hassounah, H., Graviss, E. A., Kong, Y., Cirillo, J. D., and Rao, J. (2014) Fluorogenic Probes with Substitutions at the 2 and 7 Positions of Cephalosporin are Highly BlaC-Specific for Rapid Mycobacterium tuberculosis Detection. Angew. Chem., Int. Ed. 53, 9360-9364.
  81. Zandi, T. A., Marshburn, R. L., Stateler, P. K., and Brammer Basta, L. A. (2019) Phylogenetic and Biochemical Analyses of Mycobacterial l,d-Transpeptidases Reveal a Distinct Enzyme Class That Is Preferentially Acylated by Meropenem. ACS Infect. Dis. 5, 2047-2054.
  82. Steiner, E. M., Schneider, G., and Schnell, R. (2017) Binding and processing of β-lactam antibiotics by the transpeptidase LdtMt2 from Mycobacterium tuberculosis. FEBS J. 284, 725-741.
  83. Sayed, A. R. M., Shah, N. R., Basso, K. B., Kamat, M., Jiao, Y., Moya, B., Sutaria, D. S., Lang, Y., Tao, X., Liu, W., Shin, E., Zhou, J., Werkman, C., Louie, A., Drusano, G. L., and Bulitta, J. B. (2020) First penicillin-binding protein occupancy patterns for 15 β-lactams and β- lactamase inhibitors in Mycobacterium abscessus. Antimicrob. Agents Chemother. 65, No. e01956-20.
  84. Wivagg, C. N., Wellington, S., Gomez, J. E., and Hung, D. T. (2016) Loss of a class A penicillin-binding protein alters β-lactam susceptibilities in Mycobacterium tuberculosis. ACS Infect. Dis. 2, 104-110.
  85. Trias, J., and Nikaido, H. (1990) Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34 (1), 52-7.
  86. Trias, J., and Nikaido, H. (1990) Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J. Biol. Chem. 265 (26), 15680-4.
  87. Trias, J., and Benz, R. (1994) Permeability of the cell wall of Mycobacterium smegmatis. Mol. Microbiol. 14, 283-90.
  88. Stephan, J., Mailaender, C., Etienne, G., Daffe, M., and Niederweis, M. (2004) Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48, 4163-4170.
  89. Danilchanka, O., Pavlenok, M., and Niederweis, M. (2008) Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52, 3127-3134.
  90. Mailaender, C., Reiling, N., Engelhardt, H., Bossmann, S., Ehlers, S., and Niederweis, M. (2004) The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology (London, U. K.) 150, 853-864.
  91. Fleischmann, R. D., Alland, D., Eisen, J. A., Carpenter, L., White, O., Peterson, J., DeBoy, R., Dodson, R., Gwinn, M., Haft, D., Hickey, E., Kolonay, J. F., Nelson, W. C., Umayam, L. A., Ermolaeva, M., Salzberg, S. L., Delcher, A., Utterback, T., Weidman, J., Khouri, H., Gill, J., Mikula, A., Bishai, W., Jacobs, W. R., Jr, Jr, Venter, J. C., and Fraser, C. M. (2002) Whole-genome comparison of Mycobacte- rium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479-5490.
  92. Homolka, S., Niemann, S., Russell, D. G., and Rohde, K. H. (2010) Functional genetic diversity among Mycobacterium tuber- culosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog. 6, e1000988.
  93. Howard, S. T., Rhoades, E., Recht, J., Pang, X., Alsup, A., Kolter, R., Lyons, C. R., and Byrd, T. F. (2006) Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptido- lipid and reacquisition of an invasive phenotype. Microbiology 152, 1581-1590.
  94. Rodrigues Felix, C., Gupta, R., Geden, S., Roberts, J., Winder, P., Pomponi, S. A., Diaz, M. C., Reed, J. K., Wright, A. E., and Rohde, K. H. (2017) Selective Killing Of Dormant Mycobacterium tuberculosis By Marine Natural Products. Antimicrob. Agents Chemo- ther. 61, e00743-17.
  95. Gupta, R., Netherton, M., Byrd, T. F., and Rohde, K. H. (2017)
  96. Reporter-Based Assays for High-Throughput Drug Screening against Mycobacterium abscessus. Front. Microbiol. 8, 2204.
  97. Gupta, R., Rodrigues Felix, C., Akerman, M. P., Akerman, K. J., Slabber, C. A., Wang, W., Adams, J., Shaw, L. N., Tse-Dinh, Y. C., Munro, O. Q., and Rohde, K. H. (2018) Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Anti- microb. Agents Chemother. 62, e01696-17. https://doi.org/10.1021/acsinfecdis.1c00185 ACS Infect. Dis. 2021, 7, 2425-2436