Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase (original) (raw)
Related papers
Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase
Protein Science, 2008
Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or “flip-flop” their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF2P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.
Structure, 2013
Acetyl-coenzyme A (acetyl-CoA) carboxylase is a biotin-dependent, multifunctional enzyme that catalyzes the regulated step in fatty acid synthesis. The Escherichia coli enzyme is composed of a homodimeric biotin carboxylase (BC), biotinylated biotin carboxyl carrier protein (BCCP), and an a 2 b 2 heterotetrameric carboxyltransferase. This enzyme complex catalyzes two half-reactions to form malonylcoenzyme A. BC and BCCP participate in the first half-reaction, whereas carboxyltransferase and BCCP are involved in the second. Three-dimensional structures have been reported for the individual subunits; however, the structural basis for how BCCP reacts with the carboxylase or transferase is unknown. Therefore, we report here the crystal structure of E. coli BCCP complexed with BC to a resolution of 2.49 Å. The protein-protein complex shows a unique quaternary structure and two distinct interfaces for each BCCP monomer. These BCCP binding sites are unique compared to phylogenetically related biotin-dependent carboxylases and therefore provide novel targets for developing antibiotics against bacterial acetyl-CoA carboxylase.
Journal of Biological Chemistry, 2001
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis. The Escherichia coli biotin carboxylase is readily isolated from the other components of the acetyl-CoA carboxylase complex such that enzymatic activity is retained. The three-dimensional structure of biotin carboxylase, determined by x-ray crystallography, demonstrated that the enzyme is a homodimer consisting of two active sites in which each subunit contains a complete active site. To understand how each subunit contributes to the overall function of biotin carboxylase, we made hybrid molecules in which one subunit had a wild-type active site, and the other subunit contained an active site mutation known to significantly affect the activity of the enzyme. One of the two genes encoded a poly-histidine tag at its N terminus, whereas the other gene had an N-terminal FLAG epitope tag. The two genes were assembled into a mini-operon that was induced to give high level expression of both enzymes. "Hybrid" dimers composed of one subunit with a wild-type active site and a second subunit having a mutant active site were obtained by sequential chromatographic steps on columns of immobilized nickel chelate and anti-FLAG affinity matrices. In vitro kinetic studies of biotin carboxylase dimers in which both subunits were wild type revealed that the presence of the N-terminal tags did not alter the activity of the enzyme. However, kinetic assays of hybrid dimer biotin carboxylase molecules in which one subunit had an active site mutation (R292A, N290A, K238Q, or E288K) and the other subunit had a wild-type active site resulted in 39-, 28-, 94-, and 285-fold decreases in the activity of these enzymes, respectively. The dominant negative effects of these mutant subunits were also detected in vivo by monitoring the rate of fatty acid biosynthesis by [ 14 C]acetate labeling of cellular lipids. Expression of the mutant biotin carboxylase genes from an inducible arabinose promoter resulted in a significantly reduced rate of fatty acid synthesis relative to the same strain that expressed the wild type gene. Thus, both the in vitro and in vivo data indicate that both subunits of biotin carboxylase are required for activity and that the two subunits must be in communication during enzyme function.
Movement of the Biotin Carboxylase B-domain as a Result of ATP Binding
Journal of Biological Chemistry, 2000
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-Å resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the threedimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-Å resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45 o of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.
Three-Dimensional Structure of the Biotin Carboxylase Subunit of AcetylCoA Carboxylase
Biochemistry, 1994
Acetyl-coA carboxylase is found in all animals, plants, and bacteria and catalyzes the first committed step in fatty acid synthesis. It is a multicomponent enzyme containing a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase functionality. Here we report the X-ray structure of the biotin carboxylase component from Escherichia coli determined to 2.4-A resolution. The structure was solved by a combination of multiple isomorphous replacement and electron density modification procedures. The overall fold of the molecule may be described in terms of three structural domains. The N-terminal region, formed by Met l-Ile 103, adopts a dinucleotide binding motif with five strands of parallel @-sheet flanked on either side by a-helices. The "B-domain" extends from the main body of the subunit where it folds into two a-helical regions and three strands of @-sheet. Following the excursion into the B-domain, the polypeptide chain folds back into the body of the protein where it forms an eightstranded antiparallel @-sheet. In addition to this major secondary structural element, the C-terminal domain also contains a smaller three-stranded antiparallel 0-sheet and seven a-helices. The active site of the enzyme has been identified tentatively by a difference Fourier map calculated between X-ray data from the native crystals and from crystals soaked in a Ag+/biotin complex. Those amino acid residues believed to form part of the active site pocket include His 209-Glu 21 1, His 236-Glu 241, Glu 276, Ile 287-Glu 296, and Arg 338. The structure presented here represents the first X-ray model of a biotin-dependent carboxylase.
Molecular Dynamics Simulations of Biotin Carboxylase
The Journal of Physical Chemistry B, 2008
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin, and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. Biotin carboxylase from Escherichia coli, whose crystal structures with and without ATP bound have been determined, has served as a model system for this component of the acetyl-CoA carboxylase complex. The two crystal structures revealed a large conformational change of one domain relative to the other domains when ATP is bound. Unfortunately, the crystal structure with ATP bound was obtained with an inactive site-directed mutant of the enzyme. As a consequence the structure with ATP bound lacked key structural information such as for the Mg 2+ ions and contained altered conformations of key active site residues. Therefore, nanosecond molecular dynamics studies of the wild-type biotin carboxylase were undertaken to supplant and amend the results of the crystal structures. Specifically, the protein-metal interactionsof the two catalytically critical Mg 2+ ions bound in the active site are presented along with a reevaluation of the conformations of active site residues bound to ATP. In addition, the regions of the polypeptide chain that serve as hinges for the large conformational change were identified. The results of the hinge analysis complemented a covariance analysis that identified the individual structural elements of biotin carboxylase that change their conformation in response to ATP binding. Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in the biosynthesis of long chain fatty acids. ACC is a biotin dependent enzyme found in all bacteria, plants, and animals. Since fatty acids are used for membrane biogenesis and energy storage, ACC is a target for antibiotics (1,2), herbicides (3) and anti-obesity agents (4-6). ACC produces malonyl-CoA from acetyl-CoA, ATP and bicarbonate, which serves as the source of CO 2 for all biotin-dependent carboxylases (7). The reaction mechanism proceeds via two half-reactions (Scheme 1), (1) the first half-reaction is catalyzed by biotin carboxylase (BC), and (2) the second half reaction is catalyzed by carboxyltransferase (CT). In vivo, the vitamin biotin is covalently attached to a protein called the biotin carboxyl carrier protein (designated as enzyme-biotin in Scheme 1). In mammals, these proteins comprise different domains in a single polypeptide chain (8). In contrast, in gram-negative and gram-positive bacteria biotin carboxylase, carboxyltransferase and the biotin carboxyl carrier protein are separate proteins (9). ACC from the gram-negative bacterium E. coli has been used as a model system for mechanistic investigations because the purified BC and CT components retain their activities, and utilize free biotin as a substrate thereby simplifying kinetic analysis (10). † SONL gratefully acknowledges a post-doctoral stipend from The Foundation BLANCEFLOR Boncompagni-Ludovisi, née Bildt.
Biochemistry, 2011
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a
Preliminary X-ray crystallographic analysis of biotin carboxylase isolated from Escherichia coli
Journal of Molecular Biology, 1994
We have crystallized and performed preliminary X-ray characterization of the complex between the DNAase domain of the E9 colicin and its cognate immunity protein Im9. The dissociation constant for this complex, K d = 1 Â 10 À16 M, reveals it to be one of the highest af®nity protein±protein interactions known. Single crystals of the 1:1 complex were grown from microseeding experiments using PEG 4K as precipitant. The space group is P2 1 2 1 2 1 with one molecule of complex in the asymmetric unit, and crystals contain approximately 43% solvent. These crystals are inherently non-isomorphous and so selenomethionine-derivatized protein has been prepared and crystals grown for MAD phasing experiments.