O. Hoover, A. Houghton and P. Vesely, “The Silver Mint of Damascus under Demetrius III and Antiochus XII (97/6 B.C.-83/2 B.C.),” AJN 20 (2008), 305-336 (original) (raw)
Related papers
RÉSUMÉ: Cette étude est consacrée à l’analyse des monnaies de fouilles séleucides et sert d’introduction aux méthodes de « numismatique appliquée » dans le monde hellénistique. Une grande base de données est ainsi constituée (avec plus de 8 300 bronze coins), qui proviennent de c. 70 différents sites archéologiques du Proche et Moyen Orient. Différentes méthodes statistiques sont appliquées afin de montrer que cet échantillon (« SED ») constitue une base représentative pour tirer de conclusions valables pour l’ensemble du territoire séleucide et pour toute l’histoire de la dynastie. La SED est comparée d’un point de vue statistique avec les grandes collections numismatiques. Une fois sa fiabilité démontrée, des conclusions sont tirées : la forte prédominance du petit module ‘D’, dont la plus grande quantité provient des règnes d’Antiochos III et IV, est interprétée comme la preuve d’une brève réforme introduite sous le premier. Les caractéristiques de la SED permettent de localiser cette réforme dans la partie occidentale de l’empire, autour d’Antioche. Leur provenance des sites de la Coelé-Syrie est associée aux cinquième et sixième guerres de Syrie. Enfin, des questions de vélocité de circulation des monnaies de bronze à l’intérieur de l’empire sont examinées. ABSTRACT: This paper analyzes Seleucid coins from excavations and is meant to be an introduction to the methods of “applied numismatics” in the Hellenistic world. A large database is created (more than 8,300 bronze coins) coming from c. 70 different sites in the Near and Middle East. Different statistical methods are used to show the reliability of the SED for conclusions concerning the whole Seleucid history and territory. SED is statistically compared to the biggest numismatic collections. Once the reliability of SED established, some initial conclusions are considered: the pattern of coin loss of the small ‘D’ module mostly associated with the reigns of Antiochos III and IV is interpreted as an indication of a short-lived reform introduced by the former. The nature of SED also allows to locate this reform to the Western part of the Empire, around Antioch. The provenance of these coins from sites in Coele-Syria is connected to the fifth and sixth Syrian wars. In the last part, questions of speed of circulation of bronze coins within the Empire are also considered.
Estimation of the size of a Coinage: A survey and comparison of methods
Numismatic Chronicle, 1986
How to estimate the size of a coinage Warren Esty has written several articles about estimating the number of dies used to stoke a coinage, the last word being published in the 2011 article, “The Geometric Model for estimating the number of dies.” The earlier articles have useful discussion, but their statistical methods have been superseded by formula (4) with p = 1 in the 2011 paper which demonstrates it is a good estimator.] 1986 “Estimation of the size of a coinage: A survey and comparison of methods.” [This article has useful discussion of coverage and non-randomness, but mostly it considers and rejects statistical methods that don’t work well. The discovery of the methods that does work well is in the 2011 paper.] 1991-2 “The distribution of the number of coins struck by dies” in the American Journal of Numismatics, joint with Giles Carter. [The so-called “negative binomial” statistical model has a parameter, p, for the the distribution of the number of coins stuck by a die. Carter had used p = 2 for his “simplified method” and this paper used real data to reconsider the value of p. It concluded p = 2 was too high and lower values fit better. However, there was not enough data to decide on a particular value, later determined to be p = 1.] 2006 “How to estimate the original number of dies” in Numismatic Chronicle 2006. [Formula (1) is unchanged, but formula (2) is no longer thought to be the best. Use formula (4) in the 2011 article instead. Formula (4) is still the best way to give a confidence interval given the 2011 point estimate for the original number of dies.] 2011 “The Geometric Model for estimating the number of dies.” in Quantifying Monetary Supplies in Greco-Roman Times, edited by François de Callataÿ. [Formula (4) with p = 1 is the best way to estimate the original number of dies. Formula (1) will give very similar results if the sample is random, but it never is. For a confidence interval, use formula (4) in the 2006 article. ]