Losing the music: aging affects the perception and subcortical neural representation of musical harmony (original) (raw)
2015, The Journal of neuroscience : the official journal of the Society for Neuroscience
When two musical notes with simple frequency ratios are played simultaneously, the resulting musical chord is pleasing and evokes a sense of resolution or "consonance". Complex frequency ratios, on the other hand, evoke feelings of tension or "dissonance". Consonance and dissonance form the basis of harmony, a central component of Western music. In earlier work, we provided evidence that consonance perception is based on neural temporal coding in the brainstem (Bones et al., 2014). Here, we show that for listeners with clinically normal hearing, aging is associated with a decline in both the perceptual distinction and the distinctiveness of the neural representations of different categories of two-note chords. Compared with younger listeners, older listeners rated consonant chords as less pleasant and dissonant chords as more pleasant. Older listeners also had less distinct neural representations of consonant and dissonant chords as measured using a Neural Conson...
Related papers
Neural entrainment to musical rhythm is thought to underlie the perception and production of music. In aging populations, the strength of neural entrainment to rhythm has been found to be attenuated, particularly during attentive listening to auditory streams. However, previous studies on neural entrainment to rhythm and aging have often employed artificial auditory rhythms or limited pieces of recorded, naturalistic music, failing to account for the diversity of rhythmic structures found in natural music. As part of larger project assessing a novel music-based intervention for healthy aging, we investigated neural entrainment to musical rhythms in the electroencephalogram (EEG) while participants listened to self-selected musical recordings across a sample of younger and older adults. We specifically measured neural entrainment to the level of musical pulse—quantified here as the phase-locking value (PLV)—after normalizing the PLVs to each musical recording’s detected pulse frequen...
The Neural Basis of Musical Consonance
2014
Three studies were designed to determine the relation between subcortical neural temporal coding and the perception of musical consonance. Consonance describes the pleasing perception of resolution and stability that occurs when musical notes with simple frequency ratios are combined. Recent work suggests that consonance is likely to be driven by the perception of ?harmonicity?, i.e. the extent to which the frequency components of the combined spectrum of two or more notes share a common fundamental frequency and therefore resemble a single complex tone (McDermott et al, 2010, Curr Biol). The publication in Chapter 3 is a paper describing a method for measuring the harmonicity of neural phase locking represented by the frequency-following response (FFR). The FFR is a scalp-recorded auditory evoked potential, generated by neural phase locking and named from the characteristic peaks in the waveform with periods corresponding to the frequencies present in the fine structure and envelop...
Subcortical representation of musical dyads: individual differences and neural generators
When two notes are played simultaneously they form a musical dyad. The sensation of pleasantness, or “consonance”, of a dyad is likely driven by the harmonic relation of the frequency components of the combined spectrum of the two notes. Previous work has demonstrated a relation between individual preference for consonant over dissonant dyads, and the strength of neural temporal coding of the harmonicity of consonant relative to dissonant dyads as measured using the electrophysiological “frequency-following response” (FFR). However, this work also demonstrated that both these variables correlate strongly with musical experience. The current study was designed to determine whether the relation between consonance preference and neural temporal coding is maintained when controlling for musical experience. The results demonstrate that strength of neural coding of harmonicity is predictive of individual preference for consonance even for non-musicians. An additional purpose of the current study was to assess the cochlear generation site of the FFR to low-frequency dyads. By comparing the reduction in FFR strength when high-pass masking noise was added to the output of a model of the auditory periphery, the results provide evidence for the FFR to low-frequency dyads resulting in part from basal cochlear generators.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015
Musicianship in early life is associated with pervasive changes in brain function and enhanced speech-language skills. Whether these neuroplastic benefits extend to older individuals more susceptible to cognitive decline, and for whom plasticity is weaker, has yet to be established. Here, we show that musical training offsets declines in auditory brain processing that accompanying normal aging in humans, preserving robust speech recognition late into life. We recorded both brainstem and cortical neuroelectric responses in older adults with and without modest musical training as they classified speech sounds along an acoustic-phonetic continuum. Results reveal higher temporal precision in speech-evoked responses at multiple levels of the auditory system in older musicians who were also better at differentiating phonetic categories. Older musicians also showed a closer correspondence between neural activity and perceptual performance. This suggests that musicianship strengthens brain-...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.