Epitope-specific IgG pools identify PfCRT monomer and homodimer polypeptides that are differentially phosphorylated at Ser411 in Plasmodium falciparum (original) (raw)
Biochemical and Biophysical Research Communications, 2021
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a phospho-protein with three identified phosphorylation sites (Ser33, Ser411 and Thr416) at its cytosolic N- and C-termini. In this study, we report on the characterization of PfCRT anti-serum and show the presence of three epitope-specific immunoglobulin (IgG) pools (i.e., IgG-P1, P2, and P3), each recognizing a different epitope in PfCRT cytoplasmic C-terminal. IgG-P2 bound the heptapeptide sequence (408NEDSEGE414), including Ser411. The effect of Ser411 phosphorylation on the binding specificity of IgG-P2 was confirmed using heptapeptides and full-length PfCRT with substitutions of Ser411 with aspartic acid (phospho-serine mimic) and alanine residues. Moreover, using purified IgG-P2, we show the presence of PfCRT homodimer that has un-phosphorylated Ser411 and migrates with an apparent molecular mass of 90 kDa on SDS-PAGE. In addition, parasite lysates showed PfCRT to be more phosphorylated at Ser411 in CQ-sensitive (3D7) than CQ-resistant (Dd2-H) strains of P. falciparum. Taken together, the findings of this study suggest a role for Ser411 phosphorylation in PfCRT structure-function.
elias georges hasn't uploaded this paper.
Let elias know you want this paper to be uploaded.
Ask for this paper to be uploaded.