Analysis of applicability of flood vulnerability index in Pre-Saharan region, a pilot study to assess flood in Southern Morocco (original) (raw)
Related papers
Land
During the last decade, climate change has generated extreme rainfall events triggering flash floods in short periods worldwide. The delimitation of flood zones by detailed mapping generally makes it possible to avoid human and economic losses, especially in regions at high risk of flooding. The Taguenit basin, located in southern Morocco, is a particular case. The mapping of the flood zones of this basin by the method of the Flood Hazard Index (FHI) in a GIS geographic information systems environment was based on the multi-criteria analysis, taking into consideration the seven parameters influencing these extreme phenomena, namely rainfall, slope, flow accumulation, drainage network density, distance from rivers, permeability, and land use. Average annual rainfall data for 37 years (1980 to 2016) was used in this study for floodplain mapping. A weight was calculated for each parameter using the Analytical Hierarchy Process (AHP) method. The combination of the maps of the different ...
Urban flood vulnerability assessments: the case of Dire Dawa city, Ethiopia
Natural Hazards, 2019
Dire Dawa city is identified as one of the most flood-affected cities in Ethiopia. Classifying village-level flood vulnerability using flood indicators is a new approach to Dire Dawa city. Analysis of different flood vulnerability factors underpins sustainable flood risk management and the application of Flood Vulnerability Index (FVI) approach is the hub of this study. Relevant data were collected from 110 households sampled from purposely selected 10 villages found in Dire Dawa city. The flood vulnerability index was used to compare, classify and rank villages in terms of their flood vulnerability levels. For this purpose, 24 sets of indicators which are strongly affecting the levels of flood vulnerability were assessed from social, economic and physical perspectives. The FVI of each village was computed with unequal method of weighting indicators. The findings of the study revealed that Dire Dawa city villages were experiencing varying levels of flood vulnerability. Accordingly, villages 05, 06, 07 and 09 were identified with high flood vulnerability level while villages 03, 04 and 08 and villages 01, 02 and extension village were identified with medium and low level of vulnerability, respectively. Interestingly, the findings of the study confirmed that social factors contributed much for flood vulnerability in Dire Dawa city. Hence, future urban flood risk planning and management endeavors in the city of Dire Dawa must be underpinned by proper utilization of the flood vulnerability map developed addressing social vulnerability component through both structural and non-structural urban flood risk management measures.
Social Vulnerability Assessment to Flood in Medina Gounass Dakar
Journal of Geographic Information System, 2015
This paper is about the assessment of social vulnerability (SV) as a critical component of comprehensive disaster risk assessment. This study was conducted in Medina Gounass Dakar, Senegal, to bring out evidence that flooding was a threat to human security. The aim of this present study is to assess the social vulnerability to flood in Medina Gounass. Survey was carried out using structured questionnaires drawn on one hundred randomly selected households. For vulnerability assessment, the Methods for the Improvement of Vulnerability Assessment in Europe (MOVE) framework and Arc GIS are used to characterize vulnerability through three key factors, namely, 1) exposure, 2) susceptibility, and 3) lack of resilience. As a result, Medina Gounass inhabitants have a particular relationship with the place they have been living for decades. Although facing diseases and many challenges in their everyday life, people actually resist the government's relocation projects because of their symbolic relationship with the area.
Enhancing resilience is critical for coastal urban systems to cope with and minimize flood disaster risks. Global increases in the frequency of floods is a major concern for many areas in Africa. In this regard, urban planners need increasingly accurate approaches to set up a standard for measuring the resilience to floods. In Morocco, this issue is still not fully covered by the scientific community, despite the obvious need for a new approach adapted to local conditions. Using three northern coastal municipalities, this study applied a composite index and geographic information system approach to measure and map resilience to floods. The approach is also based on a linear ranking of resilience parameters, offering a more optimal classification of spatial resilience variation. The findings allowed to identify specific areas with different resilience levels and revealed the relationship between urban dimensions and the flood resilience degree. This approach provides an efficient decision support tool to facilitate flood risk management especially in terms of prioritization of protective actions.
Natural Hazards and Earth System Sciences
Enhancing resilience is critical for coastal urban systems to cope with and minimize flood disaster risks. This issue is certainly more important in Africa, where the increase in flood frequency is a significant concern for many areas. In this context, urban planners need accurate approaches to set up a standard for measuring the resilience to floods. In Morocco, this issue is still not fully covered by the scientific community despite the obvious need for a new approach adapted to local conditions. This study applied a composite index and geographic-information-system approach to measure and map resilience to floods in three northern coastal municipalities. The approach is also based on a linear ranking of resilience parameters, offering a more optimal classification of spatial resilience variation. The results allowed us to identify specific areas with different resilience levels and revealed the relationship between urban dimensions and the flood resilience degree. This approach provides an efficient decision-support tool to facilitate flood risk management, especially in terms of prioritizing protective actions.
Analysis of the Vulnerability of the City of Batna (Algeria) to Flooding
2016
The objective of this research paper is to estimate the vulnerability of the city of Batna to flooding. A multi-criteria analysis has been performed in a geographic information system (GIS) by integrating several features relating to socio-economic stakes with the aim of better understanding, assessing and spatializing the level of vulnerability in the city. Therefore, we have used a customised index approach where each parameter is a numerical index indicating the importance of the stakes, resulting in a code to be used for the modelling.
Journal of African Earth Sciences, 2018
The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.