Nouveaux électrolytes et cathodes organiques pour les batteries au Magnésium (original) (raw)

2020, Université Grenoble Alpes

Abstract

Childhood, student, or adolescent, middle-aged, etc. are the short and long journeys of each person's life. In the early stages, people have changed the most, both physically and mentally. In the next stages, the change occurs more slowly but contributes to deepening our sense of life. And, PhDs: the tortuous passage that I have been in for three years. Three-unforgettable-year help a person become more individual, confidant, and especially more human. And I have to sincerely thank some people for what they brought me: First of all, I want to thank my supervisors: Prof. Jean-Claude Lepretre and Dr. Fannie Alloin. Most likely, I'm not their easiest case they've supervised to explain things more complicated than they are, particularly regarding my habit. I am nevertheless pleased with their input and assistance in clarifying my thoughts and words whenever appropriate. During my first year at LEPMI in particular, their inspiring words were extremely helpful when times were tough. Fannie has always been there, she's paid a lot of attention to my job every time and during these three years she's taken the right choice every time. To be more accurate, I have learned a considerable amount of skills in all the fields: how to address a new subject, the working technique, the analysis of data not limited to the outcome that can be obtained at first glance, the ability to carry on having the most from the job. And there may be more to the chart. Thank you above everything, and all the work you poured into my study, with all its facets. I would like to express my deepest appreciation to the Jury that accepted to examine and referee for my thesis. Thank you for all the interesting questions and fruitful comments on this work. I'd also like to extend my gratitude to my erstwhile supervisor: Prof. Le Ngoc Thach and Ass. Prof. Le My Loan Phung that have been belonged to me and gave me helpful and sincere advice since I was a student up to now. I am also grateful to all MIEL team even if they did not directly supervise my thesis from Dr.

Key takeaways

sparkles

AI

  1. The study focuses on developing new magnesium electrolytes and organic cathodes for magnesium batteries.
  2. Magnesium (Mg) offers higher volumetric energy density compared to lithium (Li) but faces challenges with dendrite formation.
  3. Poly(benzoquinonyldisulfide) (PBQDS) exhibits promising electrochemical performance in lithium batteries, achieving capacities up to 140 mAh/g.
  4. Solvating ability of electrolytes significantly affects Mg ion diffusion and battery performance, with sulfolane showing superior results.
  5. Crown ethers improve Mg plating/stripping performance by reducing Mg ion trapping within the polymer structure.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (355)

  1. Klapp, J. et al. R. Energy for the Present and Future: A World Energy Overview. in Towards a Cleaner Planet 3-34 (Springer Berlin Heidelberg, 2007).
  2. Max, M. D. & Johnson, A. H. Energy Overview: Energy Options and Prospects for Natural Gas. in Exploration and Production of Oceanic Natural Gas Hydrate 1-55 (Springer International Publishing, 2019).
  3. Chen, G. Q. & Wu, X. F. Energy overview for globalized world economy: Source, supply chain and sink. Renew. Sust. Energ. Rev. 69, 735-749 (2017).
  4. Global primary energy consumption. https://ourworldindata.org/grapher/global-primary-energy.
  5. Population Growth by Continent From 2000 to 2018. https://www.tonymappedit.com/population-growth-by-continent-from-2000-to-2018/.
  6. Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc Natl Acad Sci USA 116, 9808-9813 (2019).
  7. Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387-390 (2019).
  8. Each Country's Share of CO2 Emissions. https://www.ucsusa.org/resources/each- countrys-share-co2-emissions.
  9. Dyatlov, S. A. et al. Prospects for Alternative Energy Sources in Global Energy Sector. IOP Conf. Ser.: Earth Environ. Sci. 434, 012014 (2020).
  10. Letcher, T. M. Future energy: improved, sustainable and clean options for our planet. (Elsevier, 2008).
  11. Adua, L. Alternative Energy: Political, Economic, and Social Feasibility, by Christopher A. Simon, Lanham, MD: Rowman. Rural Sociology 73, 684-686 (2008).
  12. Goodenough, J. B. Rechargeable batteries: challenges old and new. J Solid State Electrochem 16, 2019-2029 (2012).
  13. Goodenough, J. B. & Kim, Y. Challenges for rechargeable batteries. J. Power Sources 196, 6688-6694 (2011).
  14. Linden, D. & Reddy, T. B. Handbook of Batteries. (McGraw-Hill, 2002).
  15. TechNavio. Global Rechargeable Battery Market 2018-2022. (2018).
  16. Yoo, H. D. et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today 17, 110-121 (2014).
  17. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652-657 (2008).
  18. Cheong, J. L. et al. A high-performance slurry-coated polysulfide cathode for lithium- sulfur battery. Nano Energy 66, 104114 (2019).
  19. Rana, M. et al. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 18, 289-310 (2019).
  20. Liu, K. et al. Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule 2, 1857-1865 (2018).
  21. Braga, M. H. et al. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 10, 331-336 (2017).
  22. Choi, J. W. & Aurbach, D. Promise and reality of post-LIBs with high energy densities. Nat Rev Mater 1, 16013 (2016).
  23. Shen, X. et al. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 12, 161-175 (2018).
  24. Li, F. et al. Free-standing Sulfur-Polypyrrole Cathode in Conjunction with Polypyrrole- Coated Separator for Flexible Li-S Batteries. Energy Storage Mater. 13, 312-322 (2018).
  25. Placke, T. et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21, 1939- 1964 (2017).
  26. Zeta Potential Analysis of Lithium Ion Battery Electrolytes. https://www.azom.com/article.aspx?ArticleID=14584.
  27. Yoshio, M. et al. Lithium-ion batteries. (Springer New York, 2009).
  28. Moog, R. Lithium Battery Discussions -Electrode Materials. Johnson Matthey Technology Review 60, 204-208 (2016).
  29. Ellis, B. L. et al. Positive Electrode Materials for Li-ion and Li-Batteries. Chem. Mater. 22, 691-714 (2010).
  30. Schipper, F. et al. Study of Cathode Materials for LIBs: Recent Progress and New Challenges. Inorganics 5, 32 (2017).
  31. Xin, F. et al. Li-Nb-O Coating/Substitution Enhances the Electrochemical Performance of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) Cathode. ACS Appl. Mater. Interfaces 11, 34889- 34894 (2019).
  32. Du, Z. et al. Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochim. Acta 270, 54-61 (2018).
  33. Petibon, R. et al. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for LIBs. Electrochim. Acta 154, 287-293 (2015).
  34. Croy, J. R. et al. Review of the U.S. Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li-and Mn-Rich Cathodes. Acc. Chem. Res. 48, 2813-2821 (2015).
  35. Grimaud, A. et al. Anionic redox processes for electrochemical devices. Nature Mater 15, 121-126 (2016).
  36. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc Natl Acad Sci USA 112, 7650-7655 (2015).
  37. Zhao, L. et al. Significantly stable organic cathode for Li-ion battery based on nanoconfined poly(anthraquinonylsulfide)@MOF-derived microporous carbon. Electrochim. Acta 335, 135681 (2020).
  38. Mumyatov, A. V. et al. New Naphthalene-Based Polyimide as an Environment-Friendly Organic Cathode Material for Lithium Batteries. Energy Technol. 7, 1801016 (2019).
  39. Kim, D.-M. et al. Cointercalation of Mg 2+ Ions into Graphite for Magnesium-Ion Batteries. Chem. Mater. 30, 3199-3203 (2018).
  40. Chen, X. et al. An overview of LIBs for electric vehicles. in 2012 10 th International Power & Energy Conference (IPEC) 230-235 (IEEE, 2012).
  41. Shukla, A. K. & Kumar, T. P. Materials for next generation lithium batteries. Current Science 94, 314-332 (2008).
  42. Li, W. et al. Li + ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3, 1524 (2010).
  43. Gregory, D. H. Lithium nitrides as sustainable energy materials. Chem. Record 8, 229- 239 (2008).
  44. Pimenta, M. A. et al. Ionic conductivity in LiK0.9Na0.1SO4 single crystals. Solid Stade Communications, 82, 755-757 (1992).
  45. Lee, H.-Y. & Lee, S.-M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. commun. 6, 465-469 (2004).
  46. Yoshio, M., Tsumura, T. & Dimov, N. Silicon/graphite composites as an anode material for lithium ion batteries. J. Power Sources 163, 215-218 (2006).
  47. Bhatt, M. D. & Lee, J. Y. High capacity conversion anodes in Li-ion batteries: A review. Int. J. Hydrog. Energy 44, 10852-10905 (2019).
  48. Besenhard, J. O. & Winter, M. Advances in Battery Technology: Rechargeable Magnesium Batteries and Novel Negative-Electrode Materials for Lithium Ion Batteries. ChemPhysChem 5, 155-159 (2002).
  49. Canepa, P. et al. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 117, 4287-4341 (2017).
  50. Bruce, P. G. et al. Li-O2 and Li-S batteries with high energy storage. Nature Mater 11, 19-29 (2012).
  51. Manthiram, A. et al. Rechargeable Lithium-Sulfur Batteries. Chem. Rev. 114, 11751- 11787 (2014).
  52. Read, J. A. et al. Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 7, 617-620 (2014).
  53. Yabuuchi, N. et al. Research Development on Sodium-Ion Batteries. Chem. Rev. 114, 11636-11682 (2014).
  54. Ponrouch, A. et al. Towards a calcium-based rechargeable battery. Nature Mater 15, 169- 172 (2016).
  55. Aurbach, D. et al. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Record 3, 61-73 (2003).
  56. Klein, F. et al. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 15, 15876 (2013).
  57. Hu, Y.-S. Batteries: Getting solid. Nat Energy 1, 16042 (2016).
  58. Weber, A. Z. et al. Redox flow batteries: a review. J Appl Electrochem 41, 1137-1164 (2011).
  59. Bucur, C. B. et al. Why Grignard's Century Old Nobel Prize Should Spark Your Curiosity. in Rechargeable Batteries 611-635 (Springer International Publishing, 2015).
  60. Selis, S. M. et al. A High-Rate, High-Energy Thermal Battery System. J. Electrochem. Soc. 111, 6 (1964).
  61. Aurbach, D. et al. The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes. J. Electrochem. Soc. 138, 3536-3545 (1991).
  62. Staniewicz, R. J. A Study of the Calcium-Thionyl Chloride Electrochemical System. J. Electrochem. Soc. 127, 782-789 (1980).
  63. Meitav, A. & Peled, E. SEI (SEI) electrode-V. the formation and properties of the SEI on calcium in thionyl chloride solutions. Electrochim. Acta 33, 1111-1121 (1988).
  64. Rong, Z. et al. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chem. Mater. 27, 6016-6021 (2015).
  65. Ponrouch, A. et al. Assessing Si-based anodes for Ca-ion batteries: Electrochemical decalciation of CaSi2. Electrochem. commun. 66, 75-78 (2016).
  66. Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nature Mater 17, 16-20 (2018).
  67. Shyamsunder, A. et al. Reversible Calcium Plating and Stripping at Room Temperature Using a Borate Salt. ACS Energy Lett. 4, 2271-2276 (2019).
  68. See, K. A. et al. A High Capacity Calcium Primary Cell Based on the Ca-S System. Adv. Energy Mater. 3, 1056-1061 (2013).
  69. Elia, G. A. et al. An Overview and Future Perspectives of Aluminum Batteries. Adv. Mater. 28, 7564-7579 (2016).
  70. Das, S. K. et al. Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347-6367 (2017).
  71. Jayaprakash, N. et al. The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610 (2011).
  72. Reed, L. D. & Menke, E. The Roles of V2O5 and Stainless Steel in Rechargeable Al-Ion Batteries. J. Electrochem. Soc. 160, A915-A917 (2013).
  73. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324-328 (2015).
  74. Elia, G. A. et al. An Aluminum/Graphite Battery with Ultra-High Rate Capability. Batteries & Supercaps batt.201800114 (2018).
  75. Bitenc, J. et al. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem 8, 4128-4132 (2015).
  76. Kim, D. J. et al. Rechargeable aluminium organic batteries. Nat Energy 4, 51-59 (2019).
  77. Mordike, B. L. & Ebert, T. Magnesium Properties -applications -potential. Mater. Sci. Eng. A 9, 37-45 (2001).
  78. Fichtner, M. Motivation for a Magnesium Battery. in Magnesium Battery 1-16 (Royal Society of Chemistry, 2020).
  79. Muldoon, J. et al. Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond. Chem. Rev. 114, 11683-11720 (2014).
  80. Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011 (2013).
  81. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013).
  82. Davidson, R. et al. Formation of Magnesium Dendrites during Electrodeposition. ACS Energy Lett. 4, 375-376 (2019).
  83. Balbuena, P. B. & Wang, Y. Lithium-lon Batteries -Solid-electrolyte Interphase. (Imperial College Press, 2004).
  84. Aurbach, D. et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power Sources 97-98, 28-32 (2001).
  85. Nist-Lund, C. A. et al. Improving halide-containing magnesium-ion electrolyte performance via sterically hindered alkoxide ligands. J. Power Sources 362, 308-314 (2017).
  86. Nelson, E. G. et al. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A 2, 18194-18198 (2014).
  87. Carter, T. J. et al. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes. Angew. Chem. Int. Ed. 53, 3173-3177 (2014).
  88. Saha, P. et al. Rechargeable magnesium battery: Current status and key challenges for the future. Progress in Materials Science 66, 1-86 (2014).
  89. Crowe, A. J. et al. Kinetics of Magnesium Deposition and Stripping from Non-Aqueous Electrolytes. J. Phys. Chem. C 121, 20613-20620 (2017).
  90. Gregory, T. D. et al. NonaqueousElectrochemistryof Magnesium. J. Electrochem. Soc. 137, 6 (1990).
  91. Liebenow, C. et al. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochem. commun. 2, 641-645 (2000).
  92. Yu, X. & Manthiram, A. Performance Enhancement and Mechanistic Studies of Magnesium-Sulfur Cells with an Advanced Cathode Structure. ACS Energy Lett. 1, 431- 437 (2016).
  93. Zhao-Karger, Z. et al. Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. Adv. Energy Mater. 5, 1401155 (2015).
  94. Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2, 427 (2011).
  95. Zhao-Karger, Z. et al. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 3, 16330 (2013).
  96. Liao, C. et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 3, 6082- 6087 (2015).
  97. Merrill, L. C. & Schaefer, J. L. Conditioning-Free Electrolytes for Magnesium Batteries Using Sufone-Ether Mixtures with Increased Thermal Stability. Chem. Mater. 30, 3971- 3974 (2018).
  98. Merrill, L. C. & Schaefer, J. L. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature. Langmuir 33, 9426-9433 (2017).
  99. Mandai, T. et al. A key concept of utilization of both non-Grignard magnesium chloride and imide salts for rechargeable Mg battery electrolyte. J. Mater. Chem. A, 3152-3156 (2017).
  100. Wang, F. et al. A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48, 10763 (2012).
  101. Liao, C. et al. Highly soluble alkoxide magnesium salts for rechargeable magnesium batteries. J. Mater. Chem. A 2, 581-584 (2014).
  102. Kim, I.-T. et al. Effects of alkoxide addition on the electrochemical deposition and dissolution in triglyme-based solution dissolving magnesium bis(trifluoromethanesulfonyl)amide. J. Power Sources 278, 340-343 (2015).
  103. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. ChemInform 35, (2004).
  104. Pan, B. et al. Exploring Reliable Organic Cathode Materials for High-Performance Mg- Ion Batteries. (2016).
  105. Viestfrid, Yu. et al. Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium. J. Electroanal. Chem 576, 183-195 (2005).
  106. Doe, R. E. et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243-245 (2014).
  107. Liu, T. et al. A facile approach using MgCl2 to formulate high performance Mg 2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2, 3430 (2014).
  108. Luo, J. et al. Tertiary Mg/MgCl2/AlCl3 Inorganic Mg 2+ Electrolytes with Unprecedented Electrochemical Performance for Reversible Mg Deposition. ACS Energy Letters 1197- 1202 (2017).
  109. Barile, C. J. et al. Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition. J. Phys. Chem. C 118, 27623-27630 (2014).
  110. Barile, C. J. et al. Exploring Salt and Solvent Effects in Chloride-Based Electrolytes for Magnesium Electrodeposition and Dissolution. J. Phys. Chem. C 119, 13524-13534 (2015).
  111. Keyzer, E. N. et al. Mg(PF6)2-Based Electrolyte Systems: Understanding Electrolyte- Electrode Interactions for the Development of Mg-Ion Batteries. J. Am. Chem. Soc. 138, 8682-8685 (2016).
  112. Lu, Z. et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem 466, 203-217 (1999).
  113. Shterenberg, I. et al. Hexafluorophosphate-Based Solutions for Mg Batteries and the Importance of Chlorides. Langmuir 33, 9472-9478 (2017).
  114. Dong, H. et al. Directing Mg-Storage Chemistry in Organic Polymers toward High- Energy Mg Batteries. Joule 3, 782-793 (2019).
  115. Mohtadi, R. et al. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery. Angew. Chem. 124, 9918-9921 (2012).
  116. Tutusaus, O. et al. An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. Angew. Chem. Int. Ed. 7900-7904 (2015).
  117. Zhang, Z. et al. Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High- Performance Magnesium-Selenium and Magnesium-Sulfur Batteries. Adv. Energy Mater. 7, 1602055 (2017).
  118. Shterenberg, I. et al. The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453-460 (2014).
  119. Ha, S.-Y. et al. Magnesium(II) Bis(trifluoromethane sulfonyl)imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 6, 4063-4073 (2014).
  120. Hebié, S. et al. Electrolyte Based on Easily Synthesized, Low Cost Triphenolate- Borohydride Salt for High Performance Mg(TFSI)2-Glyme Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 28377-28385 (2017).
  121. Hebié, S. et al. Magnesium Anthracene System-Based Electrolyte as a Promoter of High Electrochemical Performance Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 10, 5527-5533 (2018).
  122. Singh, N. et al. Achieving High Cycling Rates via In Situ Generation of Active Nanocomposite Metal Anodes. ACS Appl. Energy Mater. 1, 4651-4661 (2018).
  123. Arthur, T. S. et al. Interfacial Insight from Operando XAS/TEM for Magnesium Metal Deposition with Borohydride Electrolytes. Chem. Mater. 29, 7183-7188 (2017).
  124. Nakayama, Y. et al. Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. Chem. Mater. 30, 6318-6324 (2018).
  125. Ma, Z. et al. Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review. Batteries & Supercaps 2, 115-127 (2019).
  126. Cheek, G. T. et al. Studies on the Electrodeposition of Magnesium in Ionic Liquids. J. Electrochem. Soc. 155, D91 (2008).
  127. Yoshimoto, N. et al. Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode. J. Power Sources 195, 2096-2098 (2010).
  128. Terada, S. et al. Thermal and Electrochemical Stability of Tetraglyme-Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. J. Phys. Chem. C 120, 1353-1365 (2016).
  129. Girish, G. & Munichandraiah, N. Reversibility of Mg/Mg 2+ couple in a gel polymer electrolyte. Electrochim. Acta 44, 2663-2666 (1999).
  130. Bakker, A. et al. Contact ion pair formation and ether oxygen coordination on the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca, Sr and Ba. Polymer 4371-4378 (1995).
  131. Ramalingaiah, S. et al. Conductivity and discharge characteristic studies of novel polymer electrolyte based on PEO complexed with Mg(NO3)2 salt. Mater. Lett 29, 285-289 (1996).
  132. Polu, A. R. & Kumar, R. Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chin J Polym Sci 31, 641-648 (2013).
  133. Ab Aziz, A. & Tominaga, Y. Magnesium ion-conductive poly(ethylenecarbonate) electrolytes. Ionics 24, 3475-3481 (2018).
  134. Ponmani, S. & Prabhu, M. R. Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc:Mg(ClO4)2 for Mg ion batteries. J Mater Sci: Mater Electron 29, 15086-15096 (2018).
  135. Shanmuga Priya, S. et al. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 24, 3861-3875 (2018).
  136. Park, B. & Schaefer, J. L. Review-Polymer Electrolytes for Magnesium Batteries: Forging Away from Analogs of Lithium Polymer Electrolytes and Towards the Rechargeable Magnesium Metal Polymer Battery. J. Electrochem. Soc. 167, 070545 (2020).
  137. Liang, Y. et al. Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode. Adv. Mater. 640-643 (2011).
  138. Li, W. et al. Metallic Magnesium Nano/Mesoscale Structures: Their Shape-Controlled Preparation and Mg/Air Battery Applications. Angew. Chem. Int. Ed. 6009-6012 (2006).
  139. Peng, B. et al. Magnesium nanostructures for energy storage and conversion. J. Mater. Chem. 19, 2877 (2009).
  140. Son, S.-B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chemistry 532-539 (2018).
  141. Dahn, J. R. Phase diagram of LixC6. Phys. Rev. B 44, 9170-9177 (1991).
  142. Novak, P. et al. Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium? Electrochim. Acta 351-367 (1999).
  143. Cohn, A. P. et al. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 4, 14954-14959 (2016).
  144. Er, D. et al. Defective Graphene and Graphene Allotropes as High-Capacity Anode Materials for Mg Ion Batteries. ACS Energy Lett. 1, 638-645 (2016).
  145. Pontiroli, D. et al. Ionic conductivity in the Mg intercalated fullerene polymer Mg2C60. Carbon 51, 143-147 (2013).
  146. Margadonna, S. et al. Li4C60: A Polymeric Fulleride with a Two-Dimensional Architecture and Mixed Interfullerene Bonding Motifs. J. Am. Chem. Soc. 15032-15033 (2004).
  147. Jache, B. & Adelhelm, P. Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena. Angew. Chem. 10333-10337 (2014).
  148. Schoderböck, P. & Boehm, H. P. Observations of staging in the electrochemical intercalation of lithium into graphite from dimethyl sulfoxide solutions. Synthetic Metals 44, 239-246 (1991).
  149. Kim, H. et al. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 8, 2963- 2969 (2015).
  150. Kawaguchi, M. & Kurasaki, A. Intercalation of magnesium into a graphite-like layered material of composition BC2N. Chem. Commun. 48, 6897 (2012).
  151. Chen, C. et al. Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 Nanoribbons as High- Performance Anode of Rechargeable Mg-Ion Batteries. ACS Energy Lett. 1, 1165-1172 (2016).
  152. Wu, N. et al. Improving the Electrochemical Performance of the Li4Ti5O12 Electrode in a Rechargeable Magnesium Battery by Lithium-Magnesium Co-Intercalation. Angew. Chem. Int. Ed. 54, 5757-5761 (2015).
  153. Obrovac, M. N. Si-alloy negative electrodes for LIBs. Current Opinion in Electrochemistry 9, 8-17 (2018).
  154. Murgia, F. et al. Electrochemical Mg alloying properties along the Sb1-xBix solid solution. Electrochim. Acta 259, 276-283 (2018).
  155. Arthur, T. S. et al. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. commun. 16, 103-106 (2012).
  156. Ellis, L. D. et al. In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells. J. Electrochem. Soc. 161, A416-A421 (2014).
  157. Murgia, F. et al. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high-performance negative electrodes for Mg batteries. J. Mater. Chem. A 3, 16478- 16485 (2015).
  158. Singh, N. et al. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149-151 (2013).
  159. Zhao, M. et al. Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449-95468 (2016).
  160. Gabaudan, V. et al. Electrochemical Alloying of Lead in Potassium-Ion Batteries. ACS Omega 3, 12195-12200 (2018).
  161. Periyapperuma, K. et al. The Reversible Magnesiation of Pb. Electrochim. Acta 165, 162- 165 (2015).
  162. Murgia, F. et al. First investigation of indium-based electrode in Mg battery. Electrochem. commun. 60, 56-59 (2015).
  163. Zhang, Q. et al. High Energy Density Electrode Materials for Rechargeable Magnesium Batteries. ECS Transactions 66, 171-181 (2015).
  164. Zhao, T. et al. TiC2: a new two-dimensional sheet beyond MXenes. Nanoscale 8, 233- 242 (2016).
  165. Zeng, J. et al. Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity. Electrochim. Acta 247, 265-270 (2017).
  166. Novák, P. et al. Magnesium insertion batteries -an alternative to lithium? J. Power Sources 54, 479-482 (1995).
  167. Levi, E. et al. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chem. Mater. 22, 860-868 (2010).
  168. Bruce, P. G. et al. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
  169. Obrovac, M. N. et al. The Electrochemical Displacement Reaction of Lithium with Metal Oxides. J. Electrochem. Soc. 148, A576 (2001).
  170. Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 192, 1126-1127 (1976).
  171. Yoo, H. D. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat Commun 8, 339 (2017).
  172. Shuai, J. et al. Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing. Mater. Res. Express 3, 064001 (2016).
  173. Li, Z. et al. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nat Commun 9, 5115 (2018).
  174. Liang, Y. et al. Interlayer-Expanded Molybdenum Disulfide Nanocomposites for Electrochemical Magnesium Storage. Nano Lett. 15, 2194-2202 (2015).
  175. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724-727 (2000).
  176. Zhang, R. & Ling, C. Status and challenge of Mg battery cathode. MRS energy sustain. 3, E1 (2016).
  177. Li, Z. et al. Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism. J. Power Sources 451, 227815 (2020).
  178. Yuan, C. et al. Investigation of the intercalation of polyvalent cations (Mg 2+ , Zn 2+ ) into λ- MnO2 for rechargeable aqueous battery. Electrochim. Acta 404-412 (2014).
  179. Rasul, S. et al. M. High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243-249 (2012).
  180. Zhang, M. et al. Communication-Investigation of Anatase-TiO2 as an Efficient Electrode Material for Magnesium-Ion Batteries. J. Electrochem. Soc. 163, A2368-A2370 (2016).
  181. Amatucci, G. G. et al. Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide. J. Electrochem. Soc. 148, A940 (2001).
  182. Doe, R. E. et al. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells, US Patent. US9401528B2, (2016).
  183. Sa, N. et al. Is alpha-V2O5 a cathode material for Mg insertion batteries? J. Power Sources 323, 44-50 (2016).
  184. Mao, M. et al. A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47, 8804-8841 (2018).
  185. Duffort, V., Sun, X. & Nazar, L. F. Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chem. Commun. 52, 12458- 12461 (2016).
  186. Xiong, F. et al. Magnesium storage performance and mechanism of CuS cathode. Nano Energy 47, 210-216 (2018).
  187. Chung, J.-S. & Sohn, H.-J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. Journal of Power Sources 108, 226-231 (2002).
  188. Yue, J.-L. et al. Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries. Chem. Commun. 49, 5868 (2013).
  189. Tashiro, Y. et al. Copper Selenide as a New Cathode Material based on Displacement Reaction for Rechargeable Magnesium Batteries. Electrochim. Acta 210, 655-661 (2016).
  190. Wang, L. et al. Sponge-Like Porous Manganese(II,III) Oxide as a Highly Efficient Cathode Material for Rechargeable Magnesium Ion Batteries. Chem. Mater. 28, 6459- 6470 (2016).
  191. Okamoto, S. et al. Intercalation and Push-Out Process with Spinel-to-Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries. Adv. Sci. 1500072 (2015).
  192. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1, 011002 (2013).
  193. Hannah, D. C. et al. On the Balance of Intercalation and Conversion Reactions in Battery Cathodes. Adv. Energy Mater. 8, 1800379 (2018).
  194. Zainol, N. H. et al. Synthesis and characterization of Ti-doped MgMn2O4 cathode material for magnesium ion batteries. Ionics 25, 133-139 (2019).
  195. Lopes, P. P. et al. Real-Time Monitoring of Cation Dissolution/Deintercalation Kinetics from Transition-Metal Oxides in Organic Environments. J. Phys. Chem. Lett. 9, 4935- 4940 (2018).
  196. Liu, M. et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964-974 (2015).
  197. Song, Z. et al. Anthraquinone based polymer as high-performance cathode material for rechargeable lithium batteries. Chem. Commun. 448-450 (2009).
  198. Genorio, B. et al. Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for LIBs. Angew. Chem. Int. 122, 7380-7382 (2010).
  199. Senoh, H. et al. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries. Electrochim. Acta 56, 10145-10150 (2011).
  200. Lv, D. et al. A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte. J. Electrochem. Soc. 160, A351-A355 (2013).
  201. Tang, M. et al. Carbonyl polymeric electrode materials for metal-ion batteries. Chin Chem Lett 29, 232-244 (2018).
  202. Abraham, I. et al. Recent advances in 1,4-benzoquinone chemistry. J. Braz. Chem. Soc. 22, 385-421 (2011).
  203. Wang, Y. et al. Recent Advances in Direct Functionalization of Quinones: Recent Advances in Direct Functionalization of Quinones. Eur. J. Org. Chem. 2019, 2179-2201 (2019).
  204. Bitenc, J. et al. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries. Materials 13, 506 (2020).
  205. Sano, H. et al. Mg 2+ Storage in Organic Positive-electrode Active Material Based on 2,5- Dimethoxy-1,4-benzoquinone. Chem. Lett. 41, 1594-1596 (2012).
  206. Senoh, H. et al. Sulfone-Based Electrolyte Solutions for Rechargeable Magnesium Batteries Using 2,5-Dimethoxy-1,4-benzoquinone Positive Electrode. J. Electrochem. Soc. 161, A1315-A1320 (2014).
  207. Tian, J. et al. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. ACS Nano 12, 3424-3435 (2018).
  208. Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2, 427 (2011).
  209. Bitenc, J. et al. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem 8, 4128-4132 (2015).
  210. Vizintin, A. et al. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat Commun 9, 661 (2018).
  211. Pan, B. et al. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater. 6, 2-4 (2016).
  212. Song, Z. et al. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. Angew. Chem. Int. Ed. 54, 13947-13951 (2015).
  213. Cui, L. et al. Salt-controlled dissolution in pigment cathode for high-capacity and long- life magnesium organic batteries. Nano Energy 65, 103902 (2019).
  214. Zhuang, Y. et al. Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science 92, 35-88 (2019).
  215. Bančič, T. et al. Electrochemical performance and redox mechanism of naphthalene- hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources 395, 25- 30 (2018).
  216. Zhou, L. et al. Interlayer-Spacing-Regulated VOPO4 Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries. Adv. Mater. 30, 1801984 (2018).
  217. Xie, J. et al. Transition-Metal-Free Magnesium-Based Batteries Activated by Anionic Insertion into Fluorinated Graphene Nanosheets. Adv. Funct. Mater. 25, 6519-6526 (2015).
  218. Meng, Y. et al. Competition between insertion of Li + and Mg 2+ : An example of TiO2-β nanowires for Mg rechargeable batteries and Li + /Mg 2+ hybrid-ion batteries. J. Power Sources 346, 134-142 (2017).
  219. Zhang, R. et al. A conceptual magnesium battery with ultrahigh rate capability. Chem. Commun. 51, 1487-1490 (2015).
  220. Fan, X. et al. A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angew. Chem. Int. Ed. 57, 7146-7150 (2018).
  221. Qiang, C. et al. PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries. 5 (2013).
  222. NuLi, Y. et al. A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur-sulfur bonds. Electrochem. commun. 9, 1913- 1917 (2007).
  223. Bitenc, J. et al. Poly(hydroquinoyl-benzoquinonyl sulfide) as an active material in Mg and Li organic batteries. Electrochem. commun. 69, 1-5 (2016).
  224. Song, Z. et al. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Adv. Sci. 2, 1500124 (2015).
  225. Kumar, G. et al. Polyaniline as an electrode material for magnesium reserve battery. Synthetic Metals 80, 279-282 (1996).
  226. Sano, H. et al. Mg 2+ Storage in Organic Positive-electrode Active Material Based on 2,5- Dimethoxy-1,4-benzoquinone. Chem. Lett. 41, 1594-1596 (2012).
  227. Pan, B. et al. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater. 1600140 (2016).
  228. Bitenc, J. et al. Poly(hydroquinoyl-benzoquinonyl sulfide) as an active material in Mg and Li organic batteries. Electrochem. commun. 69, 1-5 (2016).
  229. Rodríguez-Pérez, I. A. et al. Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion. J. Am. Chem. Soc. 139, 13031-13037 (2017).
  230. Wagner, R. et al. Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage LIBs. Adv. Mater. Interfaces 3, 1600096 (2016).
  231. Höche, D. et al. Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. Sci Rep 8, 7578 (2018).
  232. S Song, J. et al. Mapping the Challenges of Magnesium Battery. J. Phys. Chem. Lett. 7, 1736-1749 (2016).
  233. Lu, Z. et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem 466, 203-217 (1999).
  234. Li, W. et al. Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angew. Chem. 128, 6516-6520 (2016).
  235. Gao, T. et al. Reversible S 0 /MgSx Redox Chemistry in a MgTFSI2/MgCl2/DME Electrolyte for Rechargeable Mg/S Batteries. Angew. Chem. 129, 13711-13715 (2017).
  236. Osawa, E. & Musso, H. Application of Molecular Mechanics Claculations to Organic Chemistry. in Topics in Stereochemistry 117-195 (John Wiley & Sons, 1982).
  237. Zhao-Karger, Z. et al. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 10815-10820 (2017).
  238. Tutusaus, O. & Mohtadi, R. Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries. ChemElectroChem 2, 51-57 (2015).
  239. Attias, R. et al. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule 3, 27-52 (2019).
  240. Deivanayagam, R. et al. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136-153 (2019).
  241. Lee, B. et al. Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 6, 3126-3133 (2018).
  242. Cuan, J. et al. Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes. Adv. Mater. 1803533 (2018).
  243. Zaidi, S. A. A. et al. Transition metal complexes of potassium dihydridobis-, hydridotris- and tetrakis-(thiophenolyl)borate anions. Transition Met Chem 15, 231-235 (1990).
  244. Bukowski, W. The Effect of Diglyme on the Kinetics of Chromium(III) Ethanoate- Catalyzed Reactions of Carboxylic Acids with Epichlorohydrin. Org. Process Res. Dev. 6, 10-14 (2002).
  245. Tang, S. & Zhao, H. Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv. 4, 11251 (2014).
  246. Shao, Y. et al. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep 3, 3130 (2013).
  247. Ngo, H. P. K. Reversibility of Mg Deposition/Dissolution in Electrolyte Solution for Rechargeable Magnesium Batteries. (2016).
  248. Golub, I. E. et al. The interplay of proton accepting and hydride donor abilities in the mechanism of step-wise boron hydrides alcoholysis. Inorganica Chimica Acta 456, 113- 119 (2017).
  249. Tuerxun, F. et al. High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. J. Power Sources 276, 255-261 (2015).
  250. Perrin, D. D., Dempsey, B. & Serjeant, E. P. pKa Prediction for Organic Acids and Bases. (Chapman & Hall, 1981).
  251. Borsari, M. et al. Electrochemical Behavior of Diphenyl Disulfide and Thiophenol on Glassy Carbon and Gold Electrodes in Aprotic Media. Electroanalysis 15, 1192-1197 (2003).
  252. Karaman, R. Effects of substitution on the effective molarity (EM) for five membered ring-closure reactions -A computational approach. J. Mol. Struct 939, 69-74 (2010).
  253. Osawa, E. & Musso, H. Molecular Mechanics Calculations in Organic Chemistry: Examples of the Usefulness of this Simple Non-Quantum Mechanical Model. Angew. Chem. Int. 1-12 (1983).
  254. Zhang, D. et al. Studies on capacity fade of LIBs. J. Power Sources 91, 122-129 (2000).
  255. Markovsky, B. et al. The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes. Electrochim. Acta 43, 2287-2304 (1998).
  256. Saha, P. et al. A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8;
  257. T = S, Se) for rechargeable magnesium batteries. Nano Res. 10, 4415-4435 (2017).
  258. Woo, S.-G. et al. Copper incorporated CuxMo6S8 (x ≥ 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries. RSC Adv. 4, 59048-59055 (2014).
  259. Murgia, F. et al. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu2Mo6S8 for application in rechargeable magnesium batteries. J. Solid State Chem. 242, 151-154 (2016).
  260. Ling, C. & Suto, K. Thermodynamic Origin of Irreversible Magnesium Trapping in Chevrel Phase Mo6S8: Importance of Magnesium and Vacancy Ordering. Chem. Mater. 29, 3731-3739 (2017).
  261. Fedorov, I. A. et al. Electronic structure and chemical bond in naphthalene and anthracene. Phys. Chem. Chem. Phys. 13, 5679 (2011).
  262. Nicholson, R. S. Theory and Application of Cyclic Voltammetry fm Measurement of Electrode Reaction Kinetics. Analytical Chemistry 1351-1356 (1965).
  263. Espinoza, E. M. et al. Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails. J. Electrochem. Soc. 166, H3175- H3187 (2019).
  264. Ponrouch, A. et al. Multivalent rechargeable batteries. Energy Storage Materials 20, 253- 262 (2019).
  265. Mori, T. et al. Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. Phys. Chem. Chem. Phys. 18, 13524-13529 (2016).
  266. Yang, S. et al. First-Principles Study of Zigzag MoS2 Nanoribbon as a Promising Cathode Material for Rechargeable Mg Batteries. J. Phys. Chem. C 116, 1307-1312 (2012).
  267. Levi, E. et al. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chem. Mater. 22, 860-868 (2010).
  268. Liu, Y. et al. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J. Mater. Chem. A 1, 5822 (2013).
  269. Zhang, R. & Ling, C. Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. ACS Appl. Mater. Interfaces 8, 18018-18026 (2016).
  270. Yin, J. et al. Magnesium-ion battery-relevant electrochemistry of MgMn2O4: crystallite size effects and the notable role of electrolyte water content. Chem. Commun. 53, 3665- 3668 (2017).
  271. Murgia, F. et al. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu2Mo6S8 for application in rechargeable magnesium batteries. J. Solid State Chem. 242, 151-154 (2016).
  272. Koketsu, T. et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Mater 16, 1142-1148 (2017).
  273. Shea, J. J. & Luo, C. Organic Electrode Materials for Metal Ion Batteries. ACS Applied Materials & Interfaces (2020).
  274. Liang, Y. et al. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742-769 (2012).
  275. Muench, S. et al. Polymer-Based Organic Batteries. Chemical Reviews 116, 9438-9484 (2016).
  276. Pan, B. et al. 2,5-dimethoxy-1,4-benzoquinone (DMBQ) as organic cathode for rechargeable magnesium-ion batteries. J. Electrochem. Soc 163, A580-A583 (2016).
  277. Rodríguez-Pérez, I. A. et al. Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion. J. Am. Chem. Soc. 139, 13031-13037 (2017).
  278. Gomez, I. et al. D. Poly(anthraquinonylsulfides): High Capacity Redox Polymers for Energy Storage. ACS Macro Lett. 7, 419-424 (2018).
  279. Qiang, C. et al. PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries. Acta Physico-Chimica Sinica 29, 2295-2299 (2013).
  280. Attias, R. et al. Solvent Effects on the Reversible Intercalation of Magnesium-Ions into V2O5 Electrodes. ChemElectroChem 5, 3514-3524 (2018).
  281. Deivanayagam, R. et al. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 21, 136-153 (2019).
  282. Bitenc, J. et al. Effect of salts on the electrochemical performance of Mg metal-organic battery. J. Power Sources 430, 90-94 (2019).
  283. Lu, D. et al. Magnesium ion based organic secondary batteries. J. Mater. Chem. A 6, 17297-17302 (2018).
  284. Bitenc, J. et al. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem 8, 4128-4132 (2015).
  285. Song, Z. et al. Anthraquinone based polymer as high-performance cathode material for rechargeable lithium batteries. Chem Commun 448-450 (2009).
  286. Delacourt, C. et al. One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO 4 Powders. Chem. Mater. 16, 93-99 (2004).
  287. Lee, W. et al. Electrochemical Properties of Poly(Anthraquinonyl Sulfide)/Graphene Sheets Composites as Electrode Materials for Electrochemical Capacitors. Nanomaterials 4, 599-611 (2014).
  288. Li, S. et al. An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of LIBs. Electrochim. Acta 91, 282-292 (2013).
  289. Li, S. et al. Composition analysis of the SEI film on carbon electrode of Li-ion battery based on lithium difluoro(oxalate)borate and sulfolane. J. Power Sources 217, 503-508 (2012).
  290. Sa, N. et al. Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme. RSC Adv. 6, 113663-113670 (2016).
  291. Merrill, L. C. & Schaefer, J. L. Conditioning-Free Electrolytes for Magnesium Batteries Using Sufone-Ether Mixtures with Increased Thermal Stability. Chem. Mater. 30, 3971- 3974 (2018).
  292. Li, S. et al. Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries. Electrochimica Acta 65, 221-227 (2012).
  293. Mao, L. et al. Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim. Acta 79, 197-201 (2012).
  294. Xing, L. et al. Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 116, 23871-23881 (2012).
  295. Geoffroy, I. et al. Electrolytic characteristics of ethylene carbonate-diglyme-based electrolytes for lithium batteries. Electrochim. Acta 45, 2019-2027 (2000).
  296. Baskin, A. & Prendergast, D. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI)2 in Diglyme: Implications for Multivalent Electrolytes. J. Phys. Chem. C 120, 3583-3594 (2016).
  297. Xia, J. & Dahn, J. R. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. J. Power Sources 324, 704-711 (2016).
  298. Benítez, A. et al. Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J. Power Sources 397, 102-112 (2018).
  299. Hofmann, A. et al. Mixtures of Ionic Liquid and Sulfolane as Electrolytes for LIBs. Electrochim. Acta 147, 704-711 (2014).
  300. Fujii, K. et al. Structural Study on Magnesium Ion Solvation in Diglyme-Based Electrolytes: IR Spectroscopy and DFT Calculations. J. Phys. Chem. B 122, 8712-8717 (2018).
  301. Picard, T. & Sergent, N. Tetraglyme -Ca(TFSI)2, a non-monotonic liquid electrolyte. (2020).
  302. Gao, J. et al. Effects of Liquid Electrolytes on the Charge-Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. J. Phys. Chem. C 115, 25132-25137 (2011).
  303. Allcorn, E. et al. Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT. Phys. Chem. Chem. Phys. 17, 28837-28843 (2015).
  304. Deiss, E. Spurious chemical diffusion coefficients of Li + in electrode materials evaluated with GITT. Electrochim. Acta 50, 2927-2932 (2005).
  305. Dees, D. W. et al. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a Li-ion porous electrode. J. Power Sources 189, 263-268 (2009).
  306. Li, Z. et al. Electrochemical Kinetics of the Li[Li0.23Co0.3Mn0.47]O2 Cathode Material Studied by GITT and EIS. J. Phys. Chem. C 114, 22751-22757 (2010).
  307. Ba, Z. et al. Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for LIBs. ACS Appl. Mater. Interfaces 12, 807-817 (2020).
  308. Yin, J. et al. Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry. Inorganica Chim. Acta 453, 230-237 (2016).
  309. Yabuuchi, N. et al. Research Development on Sodium-Ion Batteries. Chem. Rev. 114, 11636-11682 (2014).
  310. Wang, H. et al. Electrolytes Enriched by Crown Ethers for Lithium Metal Batteries. Adv. Funct. Mater. 2002578 (2020).
  311. Zhang, S. Suppressing Li Dendrites via Electrolyte Engineering by Crown Ethers for Lithium Metal Batteries. Nano-Micro Lett. 12, 158 (2020).
  312. Zhang, H. & Lerner, M. M. Preparation of Graphite Intercalation Compounds Containing Crown Ethers. Inorg. Chem. 55, 8281-8284 (2016).
  313. Christy, F. A. & Shrivastav, P. S. Conductometric Studies on Cation-Crown Ether Complexes: A Review. Crit. Rev. Anal. Chem 41, 236-269 (2011).
  314. Sagane, F. et al. The Effect of Cyclic Ethers on Mg Plating/Stripping Reaction in Ionic Liquid Electrolytes. J. Electrochem. Soc. 166, A5054-A5058 (2019).
  315. Stettner, T. et al. Ionic Liquid-Based Electrolytes for Calcium-Based Energy Storage Systems. J. Electrochem. Soc. 167, 100544 (2020).
  316. Verrelli, R. et al. Steps Towards the Use of TiS2 Electrodes in Ca Batteries. J. Electrochem. Soc. 167, 070532 (2020).
  317. Arroyo-de Dompablo, M. E. et al. Achievements, Challenges, and Prospects of Calcium Batteries. Chem. Rev. 120, 6331-6357 (2020).
  318. Kawakubo, M. et al. High capacity carbon anode for dry polymer LIBs. J. Power Sources 225, 187-191 (2013).
  319. Zhang, L. Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosensors and Bioelectronics 23, 1610-1615 (2008).
  320. Atsbeha Kahsay, B. et al. Maleamic Acid as an Organic Anode Material in LIBs. Polymers 12, 1109 (2020).
  321. Liang, Y. et al. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2, 742-769 (2012).
  322. Xu, Y. et al. Organic materials for rechargeable sodium-ion batteries. Materials Today 21, 60-78 (2018).
  323. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127-142 (2020).
  324. Armand, M. et al. Conjugated dicarboxylate anodes for LIBs. Nature Mater. 8, 120-125 (2009).
  325. Renault, S. et al. A green Li-organic battery working as a fuel cell in case of emergency. Energy Environ. Sci. 6, 2124 (2013).
  326. Zhao, Q. et al. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life LIBs. Nano Res. 10, 4245-4255 (2017).
  327. Quarez, É. et al. From partial to complete neutralization of 2,5-dihydroxyterephthalic acid in the Li-Na system: crystal chemistry and electrochemical behavior of Na2Li2C8H2O6 vs. Li. CrystEngComm 22, 1653-1663 (2020).
  328. Wang, S. et al. Organic Li4C8H2O6 Nanosheets for LIBs. Nano Lett. 13, 4404-4409 (2013).
  329. Deng, Q. et al. The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for LIBs. J. Electroanal. Chem 761, 74-79 (2016).
  330. Wang, S. All Organic Sodium-Ion Batteries with Na4C8H2O6. Angew. Chem. 6002-6006 (2014).
  331. Jouhara, A. et al. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nat Commun 9, 4401 (2018).
  332. Poland & Kurc, B. Sulfolane with LiPF6, LiNTf2 and LiBOB -as a non-Flammable Electrolyte Working in a Li-ion battery with a LiNiO2 Cathode. Int. J. Electrochem. Sci. 5938-5955 (2018).
  333. Nakanishi, A. et al. Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li-S Battery Performance. J. Phys. Chem. C 123, 14229-14238 (2019).
  334. Huang, J. et al. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 3, 1800272 (2019).
  335. Levi, M. D. et al. Kinetic and Thermodynamic Studies of Mg 2+ and Li + Ion Insertion into the Mo6S8 Chevrel Phase. ChemInform 35, (2004).
  336. Reichardt, C. & Ebel, H. F. Solvents and solvent effects in organic chemistry. (VCH Verlagsgesellschaft, 1988).
  337. Lutz, L. et al. High Capacity Na-O2 Batteries: Key Parameters for Solution-Mediated Discharge. J. Phys. Chem. C 120, 20068-20076 (2016).
  338. Hoshi, K. et al. Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent "Diglyme" for Highly Efficient Light-Emitting Devices. ACS Appl. Mater. Interfaces 10, 24607-24612 (2018).
  339. Gutmann, V. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 661-670 (1976).
  340. Bornstein, L. Group IV Physical Chemistry 6. in Physical Chemistry 40-78 (Springer, 2009).
  341. Gutmann, V. The donor-acceptor approach to molecular interactions. (Plenum Press, 1978).
  342. Domańska, U. et al. Solubility of Sulfolane in Selected Organic Solvents. J. Chem. Eng. Data 41, 261-265 (1996).
  343. Keyzer, E. N. et al. Mg(PF6)2 -Based Electrolyte Systems: Understanding Electrolyte- Electrode Interactions for the Development of Mg-Ion Batteries. J. Am. Chem. Soc. 138, 8682-8685 (2016).
  344. Lu, Z. et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem 466, 203-217 (1999).
  345. Shterenberg, I. et al. Hexafluorophosphate-Based Solutions for Mg Batteries and the Importance of Chlorides. Langmuir 33, 9472-9478 (2017).
  346. Zhao, R. et al. Metal-Organic Frameworks for Batteries. Joule 2, 2235-2259 (2018).
  347. Shi, W. et al. Metal-organic framework-derived structures for next-generation rechargeable batteries. Funct. Mater. Lett. 11, 1830006 (2018).
  348. He, Y. et al. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy Environ. Sci. 12, 2327-2344 (2019).
  349. Walton, I. M. et al. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal-organic frameworks. New J. Chem. 40, 101-106 (2016).
  350. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Mater 16, 220-224 (2017).
  351. Vlad, A. & Balducci, A. Porous materials get energized. Nature Mater 16, 161-162 (2017).
  352. Zhou, D. et al. Self-supported multicomponent CPO-27 MOF nanoarrays as high- performance anode for lithium storage. Nano Energy 57, 711-717 (2019).
  353. Zhang, H. et al. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 54, 5268-5288 (2018).
  354. Bouazza, S. et al. Cations Insertion in Molybdenum Cluster Compounds: Electronic Structure and Electrochemical Study Using Cavity Microelectrode. J Clust Sci 20, 133- 143 (2009).
  355. Cachet-Vivier, C. et al. Development of cavity microelectrode devices and their uses in various research fields. J. Electroanal. Chem 688, 12-19 (2013).