Biogeochemistry of hadal trenches: Recent developments and future perspectives (original) (raw)

Hadal trenches are dynamic hotspots for early diagenesis in the deep sea

Communications Earth & Environment, 2021

The deepest part of the global ocean, hadal trenches, are considered to act as depocenters for organic material. Relatively high microbial activity has been demonstrated in the deepest sections of some hadal trenches, but the deposition dynamics are thought to be spatially and temporally variable. Here, we explore sediment characteristics and in-situ benthic oxygen uptake along two trenches with contrasting surface primary productivity: the Kermadec and Atacama trenches. We find that benthic oxygen consumption varies by a factor of about 10 between hadal sites but is in all cases intensified relative to adjacent abyssal plains. The benthic oxygen uptake of the two trench regions reflects the difference in surface production, whereas variations within each trench are modulated by local deposition dynamics. Respiratory activity correlates with the sedimentary inventories of organic carbon and phytodetrital material. We argue that hadal trenches represent deep sea hotspots for early di...

The hadal biosphere: Recent insights and new directions

Deep Sea Research Part II: Topical Studies in Oceanography, 2017

The hadal zone is the deep ocean with depths exceeding 6000 m. With an area approximately equal to the size of Australia, but constituting the deepest 45% of the vertical depth of the global ocean, it should come as no surprise that the hadal zone is the last great frontier of the ocean science. Historically, the hadal trenches are believed to have limited activities of life, microscopic or macroscopic, due to the extreme environmental conditions such as high hydrostatic pressure, lacking of sunlight and food supply, as well as frequent subduction-zone earthquakes. However, seminal discoveries have been made recently by scientists working at hadal trenches on microbial and faunal community structure, abundance, diversity, and mechanisms for endemism, speciation and adaptation, likely regulated by a myriad of specific geological, physical, and chemical factors of the hadal zone, forming the so-called "hadal biosphere". These discoveries ignited a new wave of hypotheses and theories on organismal metabolism, energy acquisition, and the origins of life on Earth. Here, we review the recent development in understanding the hadal biosphere and discuss future directions on hadal biosphere research.

Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth

Proceedings of the National Academy of Sciences of the United States of America, 2015

Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0 ∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000 ∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Consid...

High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

Nature Geoscience, 2013

Microbes control the decomposition of organic matter in marine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon 1 . Generally, rates of benthic decomposition decline with increasing water depth, although given the vast extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle 2,3 . However, the deepest regions of the ocean have remained virtually unexplored 4 . Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central west Pacific, which at almost 11,000 m depth represents the deepest oceanic site on Earth. We used an autonomous micro-profiling system to assess benthic oxygen consumption rates. We show that although the presence of macrofauna is restricted at Challenger Deep, rates of biological consumption of oxygen are high, exceeding rates at a nearby 6,000-m-deep site by a factor of two. Consistently, analyses of sediments collected from the two sites reveal higher concentrations of microbial cells at Challenger Deep. Furthermore, analyses of sediment 210 Pb profiles reveal relatively high sediment deposition in the trench. We conclude that the elevated deposition of organic matter at Challenger Deep maintains intensified microbial activity at the extreme pressures that characterize this environment.

Hadal trenches: the ecology of the deepest places on Earth

Trends in Ecology and Evolution, 2010

Hadal trenches account for the deepest 45% of the oceanic depth range and host active and diverse biological communities. Advances in our understanding of hadal community structure and function have, until recently, relied on technologies that were unable to document ecological information. Renewed international interest in exploring the deepest marine environment on Earth provides impetus to re-evaluate hadal community ecology. We review the abiotic and biotic characteristics of trenches and offer a contemporary perspective of trench ecology. The application of existing, rather than the generation of novel, ecological theory offers the best prospect of understanding deep ocean ecology.

Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments

2019

Hadal trench bottom (>6,000 m below sea level) sediments harbor higher microbial cell abundance compared to adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortiums that covaried across regions. Our results further s...

Sediment Accumulation and Carbon Burial in Four Hadal Trench Systems

2022

Hadal trenches are considered to act as depocenters for organic material, although pathways for the material transport and deposition rates are poorly constrained. Here we assess focusing, deposition and accumulation of material and organic carbon in four hadal trench systems underlying different surface ocean productivities; the eutrophic Atacama and Kuril-Kamchatka trenches, the mesotrophic Kermadec trench and the oligotrophic Mariana Trench. The study is based on the distributions of naturally occurring 210 Pb ex , 137 Cs and total organic carbon from recovered sediment cores and by applying previously quantified benthic mineralization rates. Periods of steady deposition and discreet mass-wasting deposits were identified from the profiles and the latter were associated with historic recorded seismic events in the respective regions. During periods without mass wasting, the estimated focusing factors along trench axes were elevated, suggesting more or less continuous downslope focusing of material toward the interior of the trenches. The estimated organic carbon deposition rates during these periods exhibited extensive site-specific variability, but were generally similar to values encountered at much shallower settings such as continental slopes and margins. Organic carbon deposition rates during periods of steady deposition were not mirrored by surface ocean productivity, but appeared confounded by local bathymetry. The inclusion of deposition mediated by mass-wasting events enhanced the sediment and organic carbon accumulations for the past ∼150 years by up to a factor of ∼4. Thus, due to intensified downslope material focusing and infrequent mass-wasting events, hadal trenches are important sites for deposition and sequestration of organic carbon in the deep sea. Plain Language Summary Hadal trenches (>6,000 m water depth) occupy ∼1% of the world's ocean floor yet are largely underexplored, but recent studies have shown that these environments are depocenters for organic material and microbial activity is intensified when compared to shallower abyssal plains. However, transport and accumulation of sediment material to these hadal trenches is poorly understood. This study investigates sedimentation and accumulation dynamics of organic carbon in trenches using results of radionuclide analysis (in sediment from the Atacama, Kuril-Kamchatka, Kermadec, and Mariana trenches). The analysis shows that trench sediments consist of discreet layers representing both periods of continuous deposition and sudden mass-wasting events often triggered by historic earthquakes. Down slope focusing of material, intensified the deposition along the trench axes. However, the deposition rates exhibited extensive site-specific variations that were partly related to mass-wasting events which greatly enhanced not only mass accumulation but also organic carbon accumulation at the trench axes. Our results illustrate that mass-wasting events play an important role on supplying organic carbon to hadal communities and suggest that hadal trenches might be quantitatively important for sediment and organic carbon sequestration in the deep sea. OGURI ET AL.

Hadal Biodiversity, Habitats and Potential Chemosynthesis in the Java Trench, Eastern Indian Ocean

Frontiers in Marine Science, 2022

The Java Trench is the only subduction trench in the Indian Ocean that extends to the hadal zone (> 6,000 m water depth), and except for sevenbenthic trawls acquired around the 1950s, there has been little to no sampling at hadal depths undertaken since. In 2019, we undertook a 5-day expedition comprising a scientific dive using a full ocean depth-rated submersible, the DSV Limiting Factor, seven hadal-lander deployments, and high-resolution bathymetric survey. The submersible performed a video transect from the deepest point of the trench, up a 150 m high near-vertical escarpment located on the forearc, and then across a plateau at a depth of ∼7,050 m to make in situ observations of the habitat heterogeneity and biodiversity inhabiting these hadal depths. We found the Java Trench hadal community to be diverse and represented by 10 phyla, 21 classes, 34 orders and 55 families, with many new records and extensions in either depth or geographic range, including a rare encounter of a hadal ascidian. The submersible transect revealed six habitats spanning the terrain. The deepest trench axis comprised fine-grained sediments dominated by holothurians, whereas evidence of active rock slope failure and associated talus deposits were prevalent in near-vertical and vertical sections of the escarpment. Sediment pockets and sediment pouring down the steep wall in "chutes" were commonly observed. The slope terrain was dominated by two species in the order Actiniaria and an asteroid, as well as 36 instances of orange, yellow, and white bacterial mats, likely exploiting discontinuities in the exposed bedrock, that may indicate a prevalence of chemosynthetic input into this hadal ecosystem. Near the top of the escarpment was an overhang populated by > 100 hexactinellid (glass) sponges. The substrate of the plateau returned to fine-grained sediment, but with a decreased density and diversity of epifauna relative to the trench floor. By providing the first visual insights of the hadal habitats and fauna of the Java Trench, this study highlights how the habitat heterogeneity influences patchy species distributions, and the great benefit of using a hadal-rated exploratory vehicle to comprehensively assess the biodiversity of hadal ecosystems.

Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches

Frontiers in Microbiology, 2019

Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments-the Mariana and Kermadec trenches-to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for highpressure incubations.

The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor

Deep Sea Research Part I: Oceanographic Research Papers, 2015

Most of our knowledge about deep-sea habitats is limited to bathyal (200-3000 m) and abyssal depths (3000-6000 m), while relatively little is known about the hadal zone (6000-11,000 m). The basic paradigm for the distribution of deep seafloor biomass suggests that the reduction in biomass and average body size of benthic animals along depth gradients is mainly related to surface productivity and remineralisation of sinking particulate organic carbon with depth. However, there is evidence that this pattern is somewhat reversed in hadal trenches by the funnelling of organic sediments, which would result in increased food availability along the axis of the trenches and towards their deeper regions. Therefore, despite the extreme hydrostatic pressure and remoteness from the pelagic food supply, it is hypothesized that biomass can increase with depth in hadal trenches. We developed a numerical model of gravitational lateral sediment transport along the seafloor as a function of slope, using the Kermadec Trench, near New Zealand, as a test environment. We propose that local topography (at a scale of tens of kilometres) and trench shape can be used to provide useful estimates of local accumulation of food and, therefore, patterns of benthic biomass. Orientation and steepness of local slopes are the drivers of organic sediment accumulation in the model, which result in higher biomass along the axis of the trench, especially in the deepest spots, and lower biomass on the slopes, from which most sediment is removed. The model outputs for the Kermadec Trench are in agreement with observations suggesting the occurrence of a funnelling effect and substantial spatial variability in biomass inside a trench. Further trench surveys will be needed to determine the degree to which seafloor currents are important compared with the gravity-driven transport modelled here. These outputs can also benefit future hadal investigations by highlighting areas of potential biological interest, on which to focus sampling effort. Comprehensive exploration of hadal trenches will, in turn, provide datasets for improving the model parameters and increasing predictive power.