Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model (original) (raw)

Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model

AJP: Lung Cellular and Molecular Physiology, 2010

Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthm...

Human mesenchymal stem cells resolve airway inflammation, hyperreactivity and histopathology in a mouse model of occupational asthma

Stem Cells and Development, 2014

Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 • 10 6 cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the APinjured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA.

Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice

Critical Care Medicine, 2013

Objective: Recent evidence suggests that mesenchymal stem cells may attenuate lung inflammation and fibrosis in acute lung injury. However, so far, no study has investigated the effects of mesenchymal stem cell therapy on the time course of the structural, mechanical, and remodeling properties in pulmonary or extrapulmonary acute lung injury. Design: Prospective randomized controlled experimental study. Setting: University research laboratory. Subjects: One hundred forty-three females and 24 male C57BL/6 mice. Interventions: Control mice received saline solution intratracheally (0.05 mL, pulmonary control) or intraperitoneally (0.5 mL, extrapulmonary control). Acute lung injury mice received Escherichia coli lipopolysaccharide intratracheally (2 mg/kg in 0.05 mL of saline/ mouse, pulmonary acute lung injury) or intraperitoneally (20 mg/ kg in 0.5 mL of saline/mouse, extrapulmonary acute lung injury). Mesenchymal stem cells were intravenously injected (IV, 1 × 10 5 cells in 0.05 mL of saline/mouse) 1 day after lipopolysaccharide administration. Measurements and Main Results: At days 1, 2, and 7, static lung elastance and the amount of alveolar collapse were similar in pulmonary and extrapulmonary acute lung injury groups. Inflammation was markedly increased at day 2 in both acute lung injury groups as evidenced by neutrophil infiltration and levels of cytokines in bronchoalveolar lavage fluid and lung tissue. Conversely, collagen deposition was only documented in pulmonary acute lung injury. Mesenchymal stem cell mitigated changes in elastance, alveolar collapse, and inflammation at days 2 and 7. Compared with extrapulmonary acute lung injury, mesenchymal stem cell decreased collagen deposition only in pulmonary acute lung injury. Furthermore, mesenchymal stem cell increased metalloproteinase-8 expression and decreased expression of tissue inhibitor of metalloproteinase-1 in pulmonary acute lung injury, suggesting that mesenchymal stem cells may have an effect on the remodeling process. This change may be related

Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

Objective(s): Bone marrow-derived mesenchymal stem cells (BMSCs) have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods: BALB/c mice were divided into three groups: control group (animals were not sensitized), asthma group (animals were sensitized by ovalbumin), asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs). BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU). After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC) count in bronchoalveolar lavage (BAL) fluid were evaluated. Results: A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutroph...

Mesenchymal Stem Cell Therapy and Lung Diseases

Advances in Biochemical Engineering/Biotechnology, 2012

Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small-and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions.

Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels

Stem cells translational medicine, 2013

Acute respiratory distress syndrome (ARDS) is an important cause of morbidity and mortality, with no currently effective therapies. Several preclinical studies have shown that human mesenchymal stem cells (hMSCs) have therapeutic potential for patients with ARDS because of their immunomodulatory properties. The clinical use of hMSCs has some limitations, such as the extensive manipulation required to isolate the cells from bone marrow aspirates and the heterogeneity in their anti-inflammatory effect in animal models and clinical trials. The objective of this study was to improve the protective anti-inflammatory capacity of hMSCs by evaluating the consequences of preactivating hMSCs before use in a murine model of ARDS. We injected endotoxemic mice with minimally manipulated hMSCs isolated from the bone marrow of vertebral bodies with or without prior activation with serum from ARDS patients. Minimally manipulated hMSCs were more efficient at reducing lung inflammation compared with ...

Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma

International Immunopharmacology, 2011

Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n = 6), Group 2 (ovalbumin induced asthma only, n = 10), Group 3 (ovalbumin induced asthma + MSCs, n = 10), and Group 4 (MSCs only, n = 10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma.