Mo1067 The Use of Self-Expanding Metal Stent for Refractory Variceal Haemorrhage (original) (raw)

Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

PLOS Genetics, 2015

Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility.

Molecular origin of mitotic aneuploidies in preimplantation embryos

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2012

Mitotic errors are common in human preimplantation embryos. The occurrence of mitotic errors is highest during the first three cleavages after fertilization and as a result about three quarters of human preimplantation embryos show aneuploidies and are chromosomally mosaic at day three of development. The origin of these preimplantation mitotic aneuploidies and the molecular mechanisms involved are being discussed in this review. At later developmental stages the mitotic aneuploidy rate is lower. Mechanisms such as cell arrest, apoptosis, active correction of the aneuploidies and preferential allocation of the aneuploid cells to the extra-embryonic tissues could underlie this lower rate. Understanding the mechanisms that cause mitotic aneuploidies in human preimplantation embryos and the way human preimplantation embryos deal with these aneuploidies might lead to ways to limit the occurrence of aneuploidies, in order to ultimately increase the quality of embryos and with that the likelihood of a successful pregnancy in IVF/ICSI. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.

Different cell fates after mitotic slippage: From aneuploidy to polyploidy

Molecular & Cellular Oncology, 2015

The molecular mechanism responsible for cell fate after mitotic slippage remains unclear. We investigated the different postmitotic effects of aneuploidy versus polyploidy using chemical inhibitors of centromereassociated protein-E (CENP-E) and kinesin family member 11 (KIF11, also known as Eg5). Aneuploidy caused substantial proteotoxic stress and DNA damage accompanied by p53-mediated postmitotic apoptosis, whereas polyploidy did not induce these antiproliferative effects.

The origin and impact of embryonic aneuploidy

Human Genetics, 2013

Despite the clinical importance of aneuploidy, surprisingly little is known concerning its impact during the earliest stages of human development. This study aimed to shed light on the genesis, progression, and survival of different types of chromosome anomaly from the fertilized oocyte through the final stage of preimplantation development (blastocyst). 2,204 oocytes and embryos were examined using comprehensive cytogenetic methodology. A diverse array of chromosome abnormalities was detected, including many forms never recorded later in development. Advancing female age was associated with dramatic increase in aneuploidy rate and complex chromosomal abnormalities. Anaphase lag and congression failure were found to be important malsegregation causing mechanisms in oogenesis and during the first few mitotic divisions. All abnormalities appeared to be tolerated until activation of the embryonic genome, after which some forms started to decline in frequency. However, many aneuploidies continued to have little impact, with affected embryos successfully reaching the blastocyst stage. Results from the direct analyses of female meiotic divisions and early embryonic stages suggest that chromosome errors present during preimplantation development have origins that are more varied than those seen in later pregnancy, raising the intriguing possibility that the source of aneuploidy might modulate impact on embryo viability. The results of this study also narrow the window of time for selection against aneuploid embryos, indicating that most survive until the blastocyst stage and, since they are not detected in clinical pregnancies, must be lost around the time of implantation or shortly thereafter.

Mitotic errors in chromosome 21 of human preimplantation embryos are associated with non-viability

Molecular Human Reproduction, 2004

Fluorescent in situ hybridization (FISH) studies of human preimplantation embryos have demonstrated a high proportion of chromosomal mosaicism. To investigate the different timings and nature of chromosomal mosaicism, we developed single cell multiplex¯uorescent (FL)-PCR to distinguish meiotic and mitotic cell division errors. Chromosome 21 was investigated as the model chromosome as trisomy 21 (Down's syndrome) represents the most common chromosomal aneuploidy that reaches live birth. Sister blastomeres from a total of 25 chromosome 21 aneuploid embryos were analysed. Of these, 13 (52%) comprised cells with concordant DNA ®ngerprints indicative of meiotic non-disjunction errors. The remaining 12 (48%) aneuploid embryos comprised discordant sister blastomere allelic pro®les and thus were mosaic. Errors at all stages including metaphase (MI) (12%) and ®rst (38%), second (31%) and third (19%) mitotic cleavage divisions were identi®ed from the types and proportion of different allelic pro®les. In addition, three embryos showed combined meiotic and mitotic cell division errors including non-disjunction and anaphase lag, suggesting that diploid cells had resulted from an aneuploid zygote. However, the majority of the mosaic aneuploid embryos showed mitotic gains and losses from a diploid zygote occurring prior to the activation of the embryonic genome. Allelic pro®ling of amniocytes from 15 prenatal diagnosis samples displayed only meiotic errors. There appears to be a large difference between the proportion of mosaic mitotic-derived trisomy 21 embryos and fetuses. These ®ndings indicate that mosaic mitotic error of chromosome 21 is associated with non-viability.

The origin of human aneuploidy: where we have been, where we are going

Human Molecular Genetics, 2007

Aneuploidy is the most common chromosome abnormality in humans, and is the leading genetic cause of miscarriage and congenital birth defects. Since the identification of the first human aneuploid conditions nearly a half-century ago, a great deal of information has accrued on its origin and etiology. We know that most aneuploidy derives from errors in maternal meiosis I, that maternal age is a risk factor for most, if not all, human trisomies, and that alterations in recombination are an important contributor to meiotic non-disjunction. In this review, we summarize some of the data that have led to these conclusions, and discuss some of the approaches now being used to address the underlying causes of meiotic non-disjunction in humans.

Diploid-aneuploid mosaicism in human embryos cultured to the blastocyst stage

Fertility and Sterility, 2005

Objective: To examine diploid-aneuploid mosaicism in human in vitro cultured blastocysts. Design: A laboratory study on spare blastocysts from an IVF program. Setting: University hospital laboratory. Patients(s): Forty-three couples undergoing IVF or intracytoplasmic sperm injection. Intervention(s): Ninety-one blastocysts were spread for fluorescence in situ hybridization using the HCl-Tween 20 method. A total of 6,664 nuclei were analyzed for aneuploidy using fluorescent DNA probes specific to chromosomes 2, 7, and 18. Main Outcome Measure(s): The proportion of aneuploid cells within each blastocyst. Results(s): The incidence of diploid-aneuploid mosaicism among 91 blastocysts examined was 17.6%. All of the mosaic blastocysts were abnormal for only one of the three chromosomes tested, with the incidence of involvement of chromosomes 2, 7, and 18 being 3.3%, 8.8%, and 5.5%, respectively. The majority of the mosaic blastocysts had low proportions of aneuploid cells. Ten of the 16 (62.5%) affected blastocysts were of morphology compatible with implantation.

The VACTERL association: mosaic mitotic aneuploidy as a cause and a model

Journal of Assisted Reproduction and Genetics, 2019

While mitotic errors commonly cause aneuploid clones soon after conception, the embryos often normalize as clones are rapidly eliminated. Although generally considered benign, evidence suggests clone elimination as the primary cause of the vertebral, ano-rectal, cardiac, tracheo-esophageal, renal, and limb (VACTERL) association of anomalies, and possibly other adverse outcomes as well. Here, clone elimination-related development disruption at specific locations is used as the basis of a comprehensive theoretical VACTERL association model that also elucidates mitotic mosaic aneuploidy effects. For the association, the model explains random temporal and spatial origins during a limited time frame and overlapping clusters of component anomalies. It supports early developmental effects involving the stage of determination, where the position in a specific morphogen field controls what a cell will become and where it will be located. Developmental properties related to determination also create specific vulnerabilities to the midline and distal defects, the latter explaining exclusively radial and tibial defects with duplications and deficiencies. The model also supports isolated anomalies as part of the association and, for mosaic mitotic aneuploidy, indicates that clone elimination nears completion at the time of lower limb determination. Although mosaic clone elimination may cause other defects, occurrences in different developmental fields separate them from VACTERL anomalies. Clone elimination may also be related to risks for a single umbilical artery and for non-structural adverse pregnancy outcomes such as losses, prematurity, and growth delays, while a paucity of clone lethality in non-humans explains the rarity of the association and of single umbilical arteries in animals.