A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery (original) (raw)

Satellite-Net: Automatic Extraction of Land Cover Indicators from Satellite Imagery by Deep Learning

ArXiv, 2019

In this paper we address the challenge of land cover classification for satellite images via Deep Learning (DL). Land Cover aims to detect the physical characteristics of the territory and estimate the percentage of land occupied by a certain category of entities: vegetation, residential buildings, industrial areas, forest areas, rivers, lakes, etc. DL is a new paradigm for Big Data analytics and in particular for Computer Vision. The application of DL in images classification for land cover purposes has a great potential owing to the high degree of automation and computing performance. In particular, the invention of Convolution Neural Networks (CNNs) was a fundament for the advancements in this field. In [1], the Satellite Task Team of the UN Global Working Group describes the results achieved so far with respect to the use of earth observation for Official Statistics. However, in that study, CNNs have not yet been explored for automatic classification of imagery. This work invest...

Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems

2019

The Sentinel-2 satellite mission offers high resolution multispectral time series image data, enabling the production of detailed land cover maps globally. At this scale, the trade-off between processing time and result quality is a central design decision. Currently, this machine learning task is usually performed using pixelwise classification methods. The radical shift of the computer vision field away from hand engineered image features and towards more automation by representation learning comes with many promises, including higher quality results and less engineering effort. In this paper we assess fully convolutional neural networks architectures as replacements for a Random Forest classifier in an operational context for the production of high resolution land cover maps with Sentinel-2 time series at the country scale. Our contributions include a framework for working with Sentinel-2 L2A time series image data, an adaptation of the U-Net model for dealing with sparse annotat...

Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery

Remote Sensing, 2018

Despite recent advances of deep Convolutional Neural Networks (CNNs) in various computer vision tasks, their potential for classification of multispectral remote sensing images has not been thoroughly explored. In particular, the applications of deep CNNs using optical remote sensing data have focused on the classification of very high-resolution aerial and satellite data, owing to the similarity of these data to the large datasets in computer vision. Accordingly, this study presents a detailed investigation of state-of-the-art deep learning tools for classification of complex wetland classes using multispectral RapidEye optical imagery. Specifically, we examine the capacity of seven well-known deep convnets, namely DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and InceptionResNetV2, for wetland mapping in Canada. In addition, the classification results obtained from deep CNNs are compared with those based on conventional machine learning tools, including Random Forest...

Application of Deep Learning in Satellite Image-based Land Cover Mapping in Africa Challenges, Emerging Solutions and Prospects: A Review

(IJACSA) International Journal of Advanced Computer Science and Applications, 2021

Deep Learning Networks (DLN), in particular, Convolutional Neural Networks (CNN) has achieved state-of-theart results in various computer vision tasks including automatic land cover classification from satellite images. However, despite its remarkable performance and broad use in developed countries, using this advanced machine learning algorithm has remained a huge challenge in developing continents such as Africa. This is because the necessary tools, techniques, and technical skills needed to utilize DL networks are very scarce or expensive. Recently, new approaches to satellite image-based land cover classification with DL have yielded significant breakthroughs, offering novel opportunities for its further development and application. This can be taken advantage of in low resources continents such as Africa. This paper aims to review some of these notable challenges to the application of DL for satellite image-based classification tasks in developing continents. Then, review the emerging solutions as well as the prospects of their use. Harnessing the power of satellite data and deep learning for land cover mapping will help many of the developing continents make informed policies and decisions to address some of its most pressing challenges including urban and regional planning, environmental protection and management, agricultural development, forest management and disaster and risks mitigation.

Sentinel2GlobalLULC: A deep-learning-ready Sentinel-2 RGB image dataset for global land use/cover mapping

bioRxiv, 2021

Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system and climate modelling to territorial and urban planning. Global LULC products are continuously developing as remote sensing data and methods grow. However, there is still low consistency among LULC products due to low accuracy for some regions and LULC types. Here, we introduce Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the consensus of 15 global LULC maps available in Google Earth Engine. Sentinel2GlobalLULC v1.1 contains 195572 RGB images organized into 29 global LULC mapping classes. Each image is a tile that has 224 × 224 pixels at 10 × 10 m spatial resolution and was built as a cloud-free composite from all Sentinel-2 images acquired between June 2015 and October 2020. Metadata includes a unique LULC type annotation per image, together with level of consensus, reverse geo-referencing, and global human modification index. Sentinel2GlobalLULC is optimized for the state...

Application of Deep Learning in Satellite Image-based Land Cover Mapping in Africa

International Journal of Advanced Computer Science and Applications

Deep Learning Networks (DLN), in particular, Convolutional Neural Networks (CNN) has achieved state-of-theart results in various computer vision tasks including automatic land cover classification from satellite images. However, despite its remarkable performance and broad use in developed countries, using this advanced machine learning algorithm has remained a huge challenge in developing continents such as Africa. This is because the necessary tools, techniques, and technical skills needed to utilize DL networks are very scarce or expensive. Recently, new approaches to satellite image-based land cover classification with DL have yielded significant breakthroughs, offering novel opportunities for its further development and application. This can be taken advantage of in low resources continents such as Africa. This paper aims to review some of these notable challenges to the application of DL for satellite image-based classification tasks in developing continents. Then, review the emerging solutions as well as the prospects of their use. Harnessing the power of satellite data and deep learning for land cover mapping will help many of the developing continents make informed policies and decisions to address some of its most pressing challenges including urban and regional planning, environmental protection and management, agricultural development, forest management and disaster and risks mitigation.

Deep Learning in the Mapping of Agricultural Land Use Using Sentinel-2 Satellite Data

Geographies

Continuous observation and management of agriculture are essential to estimate crop yield and crop failure. Remote sensing is cost-effective, as well as being an efficient solution to monitor agriculture on a larger scale. With high-resolution satellite datasets, the monitoring and mapping of agricultural land are easier and more effective. Nowadays, the applicability of deep learning is continuously increasing in numerous scientific domains due to the availability of high-end computing facilities. In this study, deep learning (U-Net) has been implemented in the mapping of different agricultural land use types over a part of Punjab, India, using the Sentinel-2 data. As a comparative analysis, a well-known machine learning random forest (RF) has been tested. To assess the agricultural land, the major winter season crop types, i.e., wheat, berseem, mustard, and other vegetation have been considered. In the experimental outcomes, the U-Net deep learning and RF classifiers achieved 97.8...

Land Use and Land Cover Mapping Using Deep Learning Based Segmentation Approaches and VHR Worldview-3 Images

Remote Sensing

Deep learning-based segmentation of very high-resolution (VHR) satellite images is a significant task providing valuable information for various geospatial applications, specifically for land use/land cover (LULC) mapping. The segmentation task becomes more challenging with the increasing number and complexity of LULC classes. In this research, we generated a new benchmark dataset from VHR Worldview-3 images for twelve distinct LULC classes of two different geographical locations. We evaluated the performance of different segmentation architectures and encoders to find the best design to create highly accurate LULC maps. Our results showed that the DeepLabv3+ architecture with an ResNeXt50 encoder achieved the best performance for different metric values with an IoU of 89.46%, an F-1 score of 94.35%, a precision of 94.25%, and a recall of 94.49%. This design could be used by other researchers for LULC mapping of similar classes from different satellite images or for different geogra...

Land Cover/Land Use Mapping of LISS IV Imagery Using Object-Based Convolutional Neural Network with Deep Features

Journal of the Indian Society of Remote Sensing

The paper proposes a new method for classifying the LISS IV satellite images using deep learning method. Deep learning method is to automatically extract many features without any human intervention. The classification accuracy through deep learning is still improved by including object-based segmentation. The object-based deep feature learning method using CNN is used to accurately classify the remotely sensed images. The method is designed with the technique of extracting the deep features and using it for object-based classification. The proposed system extracts deep features using pre-defined filter values, thus increasing the overall performance of the process compared to randomly initialized filter values. The object-based classification method can preserve edge information in complex satellite images. To improve the classification accuracy and to reduce complexity, object-based deep learning technique is used. The proposed object-based deep learning approach is used to drasti...