Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi (original) (raw)
Related papers
PLoS neglected tropical diseases, 2018
The increase in the global land temperature, expected under predictions of climate change, can directly affect the transmission of some infectious diseases, including Chagas disease, an anthropozoonosis caused by Trypanosoma cruzi and transmitted by arthropod vectors of the subfamily Triatominae. This work seeks to study the effects of temperature on the development of the life cycle, fertility and fecundity of the insect vector Rhodnius prolixus and on the metacyclogenesis of T. cruzi. All of the variables were subjected to 3 temperatures: 26°C, 28°C and 30°C. Hatching time was evaluated, along with time to fifth instar, time to adult, fecundity studied using the e-value, and egg viability during the first 3 reproductive cycles. In addition, the amounts of metacyclic trypomastigotes of the TcI and TcII DTUs in R. prolixus were evaluated from days 2 to 20 at two-day intervals and from weeks 6 to 8 post-infection. Decreases were observed in time to hatching (15-10 days on average) an...
PLOS One, 2014
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30uC) it did, at 25uC, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30uC, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.
Journal of insect physiology, 2016
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, re...
Journal of Insect Physiology, 2007
Members of the subfamily Triatominae, family Reduviidae, comprise a large number of insect species of which some are vectors of Trypanosoma cruzi, the causative agent of Chagas’ disease. This article outlines research on the process of transformation and the dynamics of developmental stages of Trypanosoma cruzi in the triatomine insect hosts. Special attention is given to the interactions of parasites with gut molecules, and the gut environment, and with host developmental physiology and intestinal organization. The vector insect's permissiveness to Trypanosoma cruzi, which develops in the vector gut, largely depends on the host nutritional state, the parasite strain, trypanolytic compounds, digestive enzymes, lectins, resident bacteria in the gut and the endocrine system of the insect vector. Finally, the mechanisms of these interactions and their significance for Trypanosoma cruzi transmission are discussed.