Long-term temporal trends and estimated transmission rates for Mycobacterium bovis infection in an undisturbed high-density badger (Meles meles) population – CORRIGENDUM (original) (raw)
Related papers
Modeling as a Decision Support Tool for Bovine TB Control Programs in Wildlife
Frontiers in Veterinary Science
Computer modeling has a long history of association with epidemiology, and has improved our understanding of the theory of disease dynamics and provided insights into wildlife disease management. A summary of badger bovine TB models and their role in decision making is presented, from a simple initial SEI model, to SEIR (inclusion of a recovered category) and SEI 1 I 2 (inclusion of two stages of disease progression) variants, and subsequent spatially-explicit individual-based models used to assess historical badger management strategies. The integration of cattle into TB models allowed comparison of the predicted impacts of different badger management strategies on cattle herd breakdown rates, and provided an economic dimension to the outputs. Estimates of R 0 for bovine TB in cattle and badgers are little higher than unity implying that the disease should be relatively easy to control, which is at odds with practical experience. A cohort of recent models have suggested that combined strategies, involving management of both host species and including vaccination may be most effective. Future models of badger vaccination will need to accommodate the partial protection from infection and likely duration of immunity conferred by the currently available vaccine (BCG). Descriptions of how models could better represent the ecological and epidemiological complexities of the badger-cattle TB system are presented, along with a wider discussion of the utility of modeling for bovine TB management interventions. This includes consideration of the information required to maximize the utility of the next generation of models.
Proceedings. Biological sciences / The Royal Society, 2014
In animal populations, males are commonly more susceptible to disease-induced mortality than females. However, three competing mechanisms can cause this sex bias: weak males may simultaneously be more prone to exposure to infection and mortality; being 'male' may be an imperfect proxy for the underlying driver of disease-induced mortality; or males may experience increased severity of disease-induced effects compared with females. Here, we infer the drivers of sex-specific epidemiology by decomposing fixed mortality rates into mortality trajectories and comparing their parameters. We applied Bayesian survival trajectory analysis to a 22-year longitudinal study of a population of badgers (Meles meles) naturally infected with bovine tuberculosis (bTB). At the point of infection, infected male and female badgers had equal mortality risk, refuting the hypothesis that acquisition of infection occurs in males with coincidentally high mortality. Males and females exhibited similar ...
Heterogeneities in behaviours of individuals may underpin important processes in evolutionary biology and ecology, including the spread of disease. Modelling approaches can sometimes fail to predict disease spread, which may partly be due to the number of unknown sources of variation in host behaviour. The European badger is a wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland, and individual behaviour has been demonstrated to be an important factor in the spread of bTB among badgers and to cattle. Radiotelemetry devices were deployed on 40 badgers from eight groups to investigate patterns of den (sett) use in a highdensity population, where each group had one or two main and three to eight outlier setts in their territory. Badgers were located at their setts for 28 days per season for 1 year to investigate how patterns differed between individuals. Denning behaviour may have a strong influence on contact patterns and the transmission of disease. We found significant heterogeneity, influenced by season, sex and age. Also, when controlling for these, bTB infection status interacting with season was highly correlated with sett use. Test-positive badgers spent more time away from their main sett than those that tested negative. We speculate that wider-ranging behaviour of test-positive animals may result in them contacting sources of infection more frequently and/or that their behaviour may be influenced by their disease status. Measures to control infectious diseases might be improved by targeting functional groups, specific areas or times of year that may contribute disproportionately to disease spread.
Behavioral Ecology and Sociobiology, 2013
Heterogeneities in behaviours of individuals may underpin important processes in evolutionary biology and ecology, including the spread of disease. Modelling approaches can sometimes fail to predict disease spread, which may partly be due to the number of unknown sources of variation in host behaviour. The European badger is a wildlife reservoir for bovine tuberculosis (bTB) in Britain and Ireland, and individual behaviour has been demonstrated to be an important factor in the spread of bTB among badgers and to cattle. Radiotelemetry devices were deployed on 40 badgers from eight groups to investigate patterns of den (sett) use in a highdensity population, where each group had one or two main and three to eight outlier setts in their territory. Badgers were located at their setts for 28 days per season for 1 year to investigate how patterns differed between individuals. Denning behaviour may have a strong influence on contact patterns and the transmission of disease. We found significant heterogeneity, influenced by season, sex and age. Also, when controlling for these, bTB infection status interacting with season was highly correlated with sett use. Test-positive badgers spent more time away from their main sett than those that tested negative. We speculate that wider-ranging behaviour of test-positive animals may result in them contacting sources of infection more frequently and/or that their behaviour may be influenced by their disease status. Measures to control infectious diseases might be improved by targeting functional groups, specific areas or times of year that may contribute disproportionately to disease spread.
Quantification of the Animal Tuberculosis Multi-Host Community Offers Insights for Control
Pathogens
Animal tuberculosis (TB) is a multi-host zoonotic disease whose prevalence in cattle herds in Europe has been increasing, despite a huge investment in eradication. The composition of the host community is a fundamental driver of pathogen transmission, and yet this has not been formally quantified for animal TB in Europe. We quantified multi-host communities of animal TB, using stochastic models to estimate the number of infected domestic and wild hosts in three regions: officially TB-free Central–Western Europe, and two largely TB-endemic regions, the Iberian Peninsula and Britain and Ireland. We show that the estimated number of infected animals in the three regions was 290,059–1,605,612 and the numbers of infected non-bovine domestic and wild hosts always exceeded those of infected cattle, with ratios ranging from 3.3 (1.3–19.6):1 in Britain and Ireland to 84.3 (20.5–864):1 in the Iberian Peninsula. Our results illustrate for the first time the extent to which animal TB systems in...
Epidemiology and Infection, 2013
SUMMARYStatistical models of epidemiology in wildlife populations usually consider diseased individuals as a single class, despite knowledge that infections progress through states of severity. Bovine tuberculosis (bTB) is a serious zoonotic disease threatening the UK livestock industry, but we have limited understanding of key epidemiological processes in its wildlife reservoirs. We estimated differential survival, force of infection and progression in disease states in a population of Eurasian badgers (Meles meles), naturally infected with bTB. Our state-dependent models overturn prevailing categorizations of badger disease states, and find novel evidence for early onset of disease-induced mortality in male but not female badgers. Males also have higher risk of infection and more rapid disease progression which, coupled with state-dependent increases in mortality, could promote sex biases in the risk of transmission to cattle. Our results reveal hidden complexities in wildlife dis...
PLoS ONE, 2011
In the UK, attempts since the 1970s to control the incidence of bovine tuberculosis (bTB) in cattle by culling a wildlife host, the European badger (Meles meles), have produced equivocal results. Culling-induced social perturbation of badger populations may lead to unexpected outcomes. We test predictions from the 'perturbation hypothesis', determining the impact of culling operations on badger populations, movement of surviving individuals and the influence on the epidemiology of bTB in badgers using data dervied from two study areas within the UK Government's Randomised Badger Culling Trial (RBCT). Culling operations did not remove all individuals from setts, with between 34-43% of badgers removed from targeted social groups. After culling, bTB prevalence increased in badger social groups neighbouring removals, particularly amongst cubs. Seventy individual adult badgers were fitted with radio-collars, yielding 8,311 locational fixes from both sites between November 2001 and December 2003. Home range areas of animals surviving within removed groups increased by 43.5% in response to culling. Overlap between summer ranges of individuals from Neighbouring social groups in the treatment population increased by 73.3% in response to culling. The movement rate of individuals between social groups was low, but increased after culling, in Removed and Neighbouring social groups. Increased bTB prevalence in Neighbouring groups was associated with badger movements both into and out of these groups, although none of the moving individuals themselves tested positive for bTB. Significant increases in both the frequency of individual badger movements between groups and the emergence of bTB were observed in response to culling. However, no direct evidence was found to link the two phenomena. We hypothesise that the social disruption caused by culling may not only increase direct contact and thus disease transmission between surviving badgers, but may also increase social stress within the surviving population, causing immunosuppression and enhancing the expression of disease.
Ecology letters, 2016
Demographic buffering allows populations to persist by compensating for fluctuations in vital rates, including disease-induced mortality. Using long-term data on a badger (Meles meles Linnaeus, 1758) population naturally infected with Mycobacterium bovis, we built an integrated population model to quantify impacts of disease, density and environmental drivers on survival and recruitment. Badgers exhibit a slow life-history strategy, having high rates of adult survival with low variance, and low but variable rates of recruitment. Recruitment exhibited strong negative density-dependence, but was not influenced by disease, while adult survival was density independent but declined with increasing prevalence of diseased individuals. Given that reproductive success is not depressed by disease prevalence, density-dependent recruitment of cubs is likely to compensate for disease-induced mortality. This combination of slow life history and compensatory recruitment promotes the persistence of...
Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles)
Background The European badger (Meles meles) is involved in the maintenance of bovine tuberculosis infection and onward spread to cattle. However, little is known about how transmission occurs. One possible route could be through direct contact between infected badgers and cattle. It is also possible that indirect contact between cattle and infected badger excretory products such as faeces or urine may occur either on pasture or within and around farm buildings. A better understanding of behaviour patterns in wild badgers may help to develop biosecurity measures to minimise direct and indirect contact between badgers and cattle. However, monitoring the behaviour of free-ranging badgers can be logistically challenging and labour intensive due to their nocturnal and semi-fossorial nature. We trialled a GPS and tri-axial accelerometer-equipped collar on a free-ranging badger to assess its potential value to elucidate behaviour-time budgets and functional habitat use. Results During the recording period between 16:00 and 08:00 on a single night, resting was the most commonly identified behaviour (67.4%) followed by walking (20.9%), snuffling (9.5%) and trotting (2.3%). When examining accelerometer data associated with each GPS fix and habitat type (occurring 2 min 30 s before and after), walking was the most common behaviour in woodland (40.3%) and arable habitats (53.8%), while snuffling was the most common behaviour in pasture (61.9%). Several nocturnal resting periods were also observed. The total distance travelled was 2.28 km. Conclusions In the present report, we demonstrate proof of principle in the application of a combined GPS and accelerometer device to collect detailed quantitative data on wild badger behaviour. Behaviour-time budgets allow us to investigate how badgers allocate energy to different activities and how this might change with disease status. Such information could be useful in the development of measures to reduce opportunities for onward transmission of bovine tuberculosis from badgers to cattle.
Proceedings. Biological sciences / The Royal Society, 2016
Senescence has been hypothesized to arise in part from age-related declines in immune performance, but the patterns and drivers of within-individual age-related changes in immunity remain virtually unexplored in natural populations. Here, using a long-term epidemiological study of wild European badgers (Meles meles), we (i) present evidence of a within-individual age-related decline in the response of a key immune-signalling cytokine, interferon-gamma (IFNγ), to ex vivo lymphocyte stimulation, and (ii) investigate three putative drivers of individual variation in the rate of this decline (sex, disease and immune cell telomere length; ICTL). That the within-individual rate of age-related decline markedly exceeded that at the population level suggests that individuals with weaker IFNγ responses are selectively lost from this population. IFNγ responses appeared to decrease with the progression of bovine tuberculosis infection (independent of age) and were weaker among males than female...