Planarity of a unit graph part -III $ |Max(R)| \geq 3 $ case (original) (raw)
Abstract
The rings considered in this article are commutative with identity 1 = 0. Recall that the unit graph of a ring R is a simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x, y are adjacent in this graph if and only if x + y ∈ U(R) where U(R) is the set of all unit elements of ring R. We denote this graph by UG(R). In this article we classified rings R with |Max(R)| ≥ 3 such that UG(R) is planar.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (16)
- S. Akbari, B. Miraftar and R. Nikandish, A note on co- maximal ideal graph of commutative rings, arxiv, 2013.
- N. Ashrafi, H.R. Mainmani, M.R. Pournaki and S. Yassemi, Unit graph associated with rings, Comm. Al- gebra, 38(2010), 2851-2871.
- M.F. Atiyah and I.G. Macdonald, Introduction to Com- mutative Algebra, Addison-Wesley publishing Company, 1969.
- R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, New York, 2000.
- N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Private Limited, New Delhi, 1994.
- M.I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm. Algebra 40(7)(2012), 2400-2404.
- H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(2008), 1801-1808.
- S.M. Moconja and Z.Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc., 83(2011), 11-21.
- J. Parejiya, S. Patat and P. Vadhel, Planarity of unit graph Planarity Part -I Local Case, Malaya Journal of Matem- atik, 8(3)(2020), 1155-1157.
- J. Parejiya, P. Vadhel and S. Patat, Planarity of unit graph Planarity Part -I Local Case, Malaya Journal of Matem- atik , 8(3)(2020), 1162-1170.
- K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull., 57(2)(2014), 413-423.
- P.K. Sharma and S.M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176(1995), 124-127.
- S. Visweswaran and Jaydeep Parejiya, When is the com- plement of the comaximal graph of a commutative ring planar?, ISRN Algebra, 2014 (2014), 8 pages.
- M.Ye and T.Wu, Comaximal ideal Graphs of com- mutative rings, J. Algebra Appl., 6(2012), DOI : 10.1142/S0219498812501149.
- ISSN(P):2319 -3786
- Malaya Journal of Matematik ISSN(O):2321 -5666