Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase (original) (raw)

Dihydrolipoamide Dehydrogenase Mutation Alters the NADH Sensitivity of Pyruvate Dehydrogenase Complex of Escherichia coli K-12

Journal of Bacteriology, 2008

Under anaerobic growth conditions, an active pyruvate dehydrogenase (PDH) is expected to create a redox imbalance in wild-type Escherichia coli due to increased production of NADH (>2 NADH molecules/glucose molecule) that could lead to growth inhibition. However, the additional NADH produced by PDH can be used for conversion of acetyl coenzyme A into reduced fermentation products, like alcohols, during metabolic engineering of the bacterium. E. coli mutants that produced ethanol as the main fermentation product were recently isolated as derivatives of an ldhA pflB double mutant. In all six mutants tested, the mutation was in the lpd gene encoding dihydrolipoamide dehydrogenase (LPD), a component of PDH. Three of the LPD mutants carried an H322Y mutation (lpd102), while the other mutants carried an E354K mutation (lpd101). Genetic and physiological analysis revealed that the mutation in either allele supported anaerobic growth and homoethanol fermentation in an ldhA pflB double mu...

Metabolic Characterization of Escherichia coli Strains Adapted to Growth on Lactate

Applied and Environmental Microbiology, 2007

In comparison with intensive studies of genetic mechanisms related to biological evolutionary systems, much less analysis has been conducted on metabolic network responses to adaptive evolution that are directly associated with evolved metabolic phenotypes. Metabolic mechanisms involved in laboratory evolution of Escherichia coli on gluconeogenic carbon sources, such as lactate, were studied based on intracellular flux states determined from 13C tracer experiments and 13C-constrained flux analysis. At the end point of laboratory evolution, strains exhibited a more than doubling of the average growth rate and a 50% increase in the average biomass yield. Despite different evolutionary trajectories among parallel evolved populations, most improvements were obtained within the first 250 generations of evolution and were generally characterized by a significant increase in pathway capacity. Partitioning between gluconeogenic and pyruvate catabolic flux at the pyruvate node remained almos...

Major Role of NAD-Dependent Lactate Dehydrogenases in Aerobic Lactate Utilization in Lactobacillus plantarum during Early Stationary Phase

Journal of Bacteriology, 2004

NAD-independent lactate dehydrogenases are commonly thought to be responsible for lactate utilization during the stationary phase of aerobic growth in Lactobacillus plantarum. To substantiate this view, we constructed single and double knockout mutants for the corresponding genes, loxD and loxL. Lactate-to-acetate conversion was not impaired in these strains, while it was completely blocked in mutants deficient in NADdependent lactate dehydrogenase activities, encoded by the ldhD and ldhL genes. We conclude that NADdependent but not NAD-independent lactate dehydrogenases are involved in this process.

Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase

Applied and Environmental Microbiology, 2010

During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed b...

Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo13C-NMR: Glucose metabolism in L. lactis deficient in LDH

European Journal of Biochemistry, 2003

The metabolism of glucose by nongrowing cells of Lactococcus lactis strain FI7851, constructed from the wild-type L. lactis strain MG1363 by disruption of the lactate dehydrogenase (ldh) gene [Gasson, M.J., Benson, K., Swindel, S. & Griffin, H. (1996) Lait76, 33–40] was studied in a noninvasive manner by 13C-NMR. The kinetics of the build-up and consumption of the pools of intracellular intermediates mannitol 1-phosphate, fructose 1,6-bisphosphate, 3-phosphoglycerate, and phosphoenolpyruvate as well as the utilization of [1-13C]glucose and formation of products (lactate, acetate, mannitol, ethanol, acetoin, 2,3-butanediol) were monitored in vivo with a time resolution of 30 s. The metabolism of glucose by the parental wild-type strain was also examined for comparison. A clear shift from typical homolactic fermentation (parental strain) to a mixed acid fermentation (lactate dehdydrogenase deficient; LDHd strain) was observed. Furthermore, high levels of mannitol were transiently produced and metabolized once glucose was depleted. Mannitol 1-phosphate accumulated intracellularly up to 76 mm concentration. Mannitol was formed from fructose 6-phosphate by the combined action of mannitol-1-phosphate dehydrogenase and phosphatase. The results show that the formation of mannitol 1-phosphate by the LDHd strain during glucose catabolism is a consequence of impairment in NADH oxidation caused by a highly reduced LDH activity, the transient production of mannitol 1-phosphate serving as a regeneration pathway for NAD+ regeneration. Oxygen availability caused a drastic change in the pattern of intermediates and end-products, reinforcing the key-role of the fulfilment of the redox balance. The flux control coefficients for the step catalysed by mannitol-1-phosphate dehydrogenase were calculated and the implications in the design of metabolic engineering strategies are discussed.

Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria

Journal of Biological Chemistry, 2013

Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changin...

Characterization of Three Lactic Acid Bacteria and Their Isogenic ldh Deletion Mutants Shows Optimization for YATP (Cell Mass Produced per Mole of ATP) at Their Physiological pHs

Applied and Environmental Microbiology, 2011

Several lactic acid bacteria use homolactic acid fermentation for generation of ATP. Here we studied the role of the lactate dehydrogenase enzyme on the general physiology of the three homolactic acid bacteria Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes. Of note, deletion of the ldh genes hardly affected the growth rate in chemically defined medium under microaerophilic conditions. However, the growth rate was affected in rich medium. Furthermore, deletion of ldh affected the ability for utilization of various substrates as a carbon source. A switch to mixed acid fermentation was observed during glucose-limited continuous growth and was dependent on the growth rate for S. pyogenes and on the pH for E. faecalis. In S. pyogenes and L. lactis, a change in pH resulted in a clear change in Y ATP (cell mass produced per mole of ATP). The pH that showed the highest Y ATP corresponded to the pH of the natural habitat of the organisms.

Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization

Canadian Journal of Microbiology, 2004

The structural gene for L-lactate dehydrogenase (LDH) (EC.1.1.1.27) from Clostridium thermocellum 27405 was cloned in Escherichia coli by screening the Lambda Zap II phage library of C. thermocellum genomic DNA. In one positive clone, an open reading frame of 948 base pairs corresponded to C. thermocellum ldh gene encoding for the predicted 315-residue protein. The ldh gene was successfully expressed in E. coli FMJ39 (ldh mutant) under the lac promoter. The recombinant enzyme was partially purified from E. coli cell extracts and its kinetic properties were determined. Clostridium thermocellum LDH was shown to catalyze a highly reversible reaction and to be an allosteric enzyme that is activated by fructose-1,6-diphosphate (FDP). For pyruvate, partially purified LDH had K m and V max values of 7.3 mmol/L and 87 µmol/min, respectively, and in the presence of FDP, a 24-fold decrease in K m and a 5.7-fold increase in V max were recorded. The enzyme exhibited no marked catalytic activity for lactate in the absence of FDP, whereas K m and V max values were 59.5 mmol/L and 52 µmol/min, respectively, in its presence. The enzyme did not lose activity when incubated at 65°C for 5 min.

Metabolic Analysis of Wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient Derivative Reveals the Role of PDHC in the Fermentative Metabolism of Glucose

Journal of Biological Chemistry, 2010

Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of 13 C-labeled and-unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional 13 C, 1 H NMR spectroscopy. Metabolite balancing, biosynthetic 13 C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO 2 and the calculated CO 2 evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO 2 for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO 2 , thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO 2 and H 2) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO 2 generation via PDHC and ox-PPP revealed that the PDHC route is more carbon-and energy-efficient, in agreement with its beneficial role in cell growth.