2-Local derivations on matrix algebras and algebras of measurable operators (original) (raw)
Abstract
Let \(\mathcal{A}\) be a unital Banach algebra such that any Jordan derivation from \(\mathcal{A}\) into any \(\mathcal{A}\)-bimodule \(\mathcal{M}\) is a derivation. We prove that any 2-local derivation from the algebra Mn(mathcalA)M_n(\mathcal{A})Mn(mathcalA) into Mn(mathcalM)M_n(\mathcal{M})Mn(mathcalM) (ngeq3)(n\geq 3)(ngeq3) is a derivation. We apply this result to show that any 2-local derivation on the algebra of locally measurable operators affiliated with a von Neumann algebra without direct abelian summands is a derivation.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- R. Alizadeh, M. J. Bitarafan, Local derivations of full matrix rings, Acta Mathematica Hungarica, 145 (2015) 433-439.
- Sh. A. Ayupov and K. K. Kudaybergenov, 2-Local derivations on von Neumann algebras, Positivity, 19 (2015) 445-455.
- Sh. A. Ayupov and K. K. Kudaybergenov, 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW * -algebras, Journal of Physics: Conference Series, 697 (2016) 1-10.
- Sh. A. Ayupov, K. K. Kudaybergenov, Derivations, local and 2-local derivations on algebras of measurable operators, in Topics in Functional Analysis and Algebra, Contemporary Mathematics, vol. 672, Amer. Math. Soc., Providence, RI, 2016, pp. 51-72.
- Sh. A. Ayupov, K. K. Kudaybergenov, A. K. Alauadinov, 2-Local derivations on matrix algebras over commutative regular algebras, Linear Alg. Appl. 439 (2013) 1294-1311.
- A. F. Ber, V. I. Chilin, F. A. Sukochev, Continuity of derivations of algebras of locally measurable operators, Integral Equations and Operator Theory, 75 4 (2013) 527-557.
- A. F. Ber, V. I. Chilin, F. A. Sukochev, Continuous derivations on algebras of locally measurable operators are inner, Proc. London Math. Soc. 109 (2014) 65-89.
- M. Brešar, Jordan derivations revisited, Math. Proc. Camb. Phil. Soc. 139, 411-425 (2005).
- D. Hadwin, J. Li, Q. Li, X. Ma, Local derivations on rings containing a von Neumann algebra and a question of Kadison, arXiv:1311.0030.
- W. Huang, J. Li and W. Qian, Derivations and 2-local derivations on matrix algebras over commutative algebras, arXiv:1611.00871v1.
- B. E. Johnson, Local derivations on C * -algebras are derivations, Trans. Amer. Math. Soc., 353 (200) 313-325.
- R. V. Kadison, Local derivations, J. Algebra, 130 (1990) 494-509.
- R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras, Vol. II, Birkhauser Boston, 1986.
- S.O. Kim, J.S. Kim, Local automorphisms and derivations on M n , Proc. Amer. Math. Soc. 132, no. 5, 1389-1392 (2004).
- D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), Operator theory: operator algebras and applications, part 2 (Durham,NH, 1988), 187- 194, Proc. Sympos. Pure Math. 51, Part 2, Amer.Math.Soc., Providence, RI, (1990).
- M. Muratov, V. Chilin, *-Algebras of unbounded operators affiliated with a von Neumann algebra, J. Math. Sci., 140 (2007), 445-451.
- P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. 125, 2677-2680 (1997).
- I.E.Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.