Reconstruction and representation of 3D objects with radial basis functions (original) (raw)
Abstract
† (a) (b) Figure 1: (a) Fitting a Radial Basis Function (RBF) to a 438,000 point-cloud. (b) Automatic mesh repair using the biharmonic RBF.
Key takeaways
AI
- Radial Basis Functions (RBFs) enable efficient representation of complex 3D surfaces from large point-clouds.
- Fast methods reduce computation time and memory usage, enabling RBF fitting to millions of points.
- RBF center reduction allows significant data compression while maintaining high accuracy in surface modeling.
- Smooth surface reconstruction from noisy LIDAR data demonstrates RBF's effectiveness in practical applications.
- The paper proposes a unified framework for surface interpolation, smoothing, and mesh repair using RBFs.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- C. Bajaj, J. Chen, and G. Xu. Modeling with cubic a-patches. ACM Transactions on Computer Graphics, 14(2):103-133, 1995.
- R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis func- tions: Methods based on preconditioned GMRES iteration. Advances in Compu- tational Mathematics, 11:253-270, 1999.
- R. K. Beatson, J. B. Cherrie, and D. L. Ragozin. Fast evaluation of radial basis functions: Methods for four-dimensional polyharmonic splines. SIAM J. Math. Anal., 32(6):1272-1310, 2001.
- R. K. Beatson and L. Greengard. A short course on fast multipole methods. In M. Ainsworth, J. Levesley, W.A. Light, and M. Marletta, editors, Wavelets, Multilevel Methods and Elliptic PDEs, pages 1-37. Oxford University Press, 1997.
- R. K. Beatson and W. A. Light. Fast evaluation of radial basis functions: Methods for two-dimensional polyharmonic splines. IMA Journal of Numerical Analysis, 17:343-372, 1997.
- R. K. Beatson, W. A. Light, and S. Billings. Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput., 22(5):1717-1740, 2000.
- R. K. Beatson, A. M. Tan, and M. J. D. Powell. Fast evaluation of radial basis functions: Methods for 3-dimensional polyharmonic splines. In preparation.
- F. Bernardini, C. L. Bajaj, J. Chen, and D. R. Schikore. Automatic reconstruction of 3D CAD models from digital scans. Int. J. on Comp. Geom. and Appl., 9(4- 5):327, Aug & Oct 1999.
- J. Bloomenthal, editor. Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco, California, 1997.
- J. C. Carr, W. R. Fright, and R. K. Beatson. Surface interpolation with radial basis functions for medical imaging. IEEE Trans. Medical Imaging, 16(1):96- 107, February 1997.
- E. W. Cheney and W. A. Light. A Course in Approximation Theory. Brooks Cole, Pacific Grove, 1999.
- J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In W. Schempp and K. Zeller, editors, Constructive Theory of Functions of Sev- eral Variables, number 571 in Lecture Notes in Mathematics, pages 85-100, Berlin, 1977. Springer-Verlag.
- N. Dyn, D. Levin, and S. Rippa. Numerical procedures for surface fitting of scattered data by radial functions. SIAM J. Sci. Stat. Comput., 7(2):639-659, 1986.
- J. Flusser. An adaptive method for image registration. Pattern Recognition, 25(1):45-54, 1992.
- L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Com- put. Phys, 73:325-348, 1987.
- H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re- constuction from unorganized points. Computer Graphics (SIGGRAPH'92 pro- ceedings), 26(2):71-78, July 1992.
- W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics, 21(4):163-169, July 1987.
- C. A. Micchelli. Interpolation of scattered data: Distance matrices and condi- tionally positive definite functions. Constr. Approx., 2:11-22, 1986.
- V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. Function rep- resentation of solids reconstructed from scattered surface points and contours. Computer Graphics Forum, 14(4):181-188, 1995.
- R. Sibson and G. Stone. Computation of thin-plate splines. SIAM J. Sci. Stat. Comput., 12(6):1304-1313, 1991.
- G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra: im- proved iso-surface extraction. Computers and Graphics, 23(4):583-598, 1999.
- G. Turk and J. F. O'Brien. Shape transformation using variational implicit sur- faces. In SIGGRAPH'99, pages 335-342, Aug 1999.
- G. Turk and J. F. O'Brien. Variational implicit surfaces. Technical Report GIT- GVU-99-15, Georgia Institute of Technology, May 1999.
- G. Wahba. Spline Models for Observational Data. Number 59 in CBMS-NSF Regional Conference Series in Applied Math. SIAM, 1990.
- G. Yngve and G. Turk. Creating smooth implicit surfaces from polygonal meshes. Technical Report GIT-GVU-99-42, Georgia Institute of Technology, 1999.