Effects of Toll-like receptor 2 agonist Pam3CysSK4 on inflammation and brain damage in experimental pneumococcal meningitis (original) (raw)

Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis

Journal of immunology (Baltimore, Md. : 1950), 2003

Heterologous expression of Toll-like receptor (TLR)2 and CD14 in Chinese hamster ovary fibroblasts was reported to confer responsiveness to pneumococcal peptidoglycan. The present study characterized the role of TLR2 in the host immune response and clinical course of pneumococcal meningitis. Pneumococcal infection of mice caused a significant increase in brain TLR2 mRNA expression at both 4 and 24 h postchallenge. Mice with a targeted disruption of the TLR2 gene (TLR2-/-) showed a moderate increase in disease severity, as evidenced by an aggravation of meningitis-induced intracranial complications, a more pronounced reduction in body weight and temperature, and a deterioration of motor impairment. These symptoms were associated with significantly higher cerebellar and blood bacterial titers. Brain expression of the complement inhibitor complement receptor-related protein y was significantly higher in infected TLR2-/- than in wild-type mice, while the expression of the meningitis-rel...

Innate Immunity to Pneumococcal Infection of the Central Nervous System Depends on Toll‐Like Receptor (TLR) 2 and TLR4

The Journal of Infectious Diseases, 2008

Background. Recent studies have suggested that, in addition to Toll-like receptor (TLR) 2, other pattern recognition receptors mediate activation of the immune response after infection of the central nervous system (CNS) with Streptococcus pneumoniae (SP). Methods. Using a mouse meningitis model, we investigated the influence of TLR4 single deficiency (TLR4 Ϫ/Ϫ), TLR2/TLR4 double deficiency (TLR2/4 Ϫ/Ϫ), and TLR2/TLR4/TLR9 triple deficiency (TLR2/4/9 Ϫ/Ϫ) on the immune response of the CNS to SP infection. To identify the cell populations that mediate the responses to SP, we generated TLR2/4 Ϫ/Ϫ-wild-type (wt) bone marrow (BM) chimeras. Results. Compared with infected wt mice, infected TLR2/4 Ϫ/Ϫ and TLR2/4/9 Ϫ/Ϫ mice had similar reductions in brain cytokine levels, pleocytosis, and cerebral pathologic findings, whereas no such effect was noted in infected TLR4 Ϫ/Ϫ mice. The attenuated immune response was paralleled by an impaired host defense that resulted in worsening of disease. Analysis of the chimeric mice after infection showed that mere TLR2/4 deficiency, either of radioresistant cells or of transplanted BM-derived cells, was sufficient to mount a substantial cerebral immune response, such as that noted in wt mice. Conclusion. In murine SP meningitis, TLR2 and TLR4 expressed on radioresistant and transplanted BM-derived cells were major cellular sensors of invading SP inducing inflammatory responses.

Toll-Like Receptor Stimulation Enhances Phagocytosis and Intracellular Killing of Nonencapsulated and Encapsulated Streptococcus pneumoniae by Murine Microglia

Infection and Immunity, 2010

Toll-like receptors (TLRs) are crucial pattern recognition receptors in innate immunity that are expressed in microglia, the resident macrophages of the brain. TLR2, -4, and -9 are important in the responses against Streptococcus pneumoniae, the most common agent causing bacterial meningitis beyond the neonatal period. Murine microglial cultures were stimulated with agonists for TLR1/2 (Pam 3 CSK 4 ), TLR4 (lipopolysaccharide), and TLR9 (CpG oligodeoxynucleotide) for 24 h and then exposed to either the encapsulated D39 (serotype 2) or the nonencapsulated R6 strain of S. pneumoniae. After stimulation, the levels of interleukin-6 and CCL5 (RANTES [regulated upon activation normal T-cell expressed and secreted]) were increased, confirming microglial activation. The TLR1/2, -4, and -9 agonist-stimulated microglia ingested significantly more bacteria than unstimulated cells (P < 0.05). The presence of cytochalasin D, an inhibitor of actin polymerizaton, blocked >90% of phagocytosis. Along with an increased phagocytic activity, the intracellular bacterial killing was also increased in TLR-stimulated cells compared to unstimulated cells. Together, our data suggest that microglial stimulation by these TLRs may increase the resistance of the brain against pneumococcal infections.

Adjuvant TACE inhibitor treatment improves the outcome of TLR2-/- mice with experimental pneumococcal meningitis

BMC Infectious Diseases, 2007

Background: Streptococcus (S.) pneumoniae meningitis has a high lethality despite antibiotic treatment. Inflammation is a major pathogenetic factor, which is unresponsive to antibiotics. Therefore adjunctive therapies with antiinflammatory compounds have been developed. TNF484 is a TNF-alpha converting enzyme (TACE) inhibitor and has been found efficacious in experimental meningitis. Toll-like receptor 2 (TLR2) contributes to host response in pneumococcal meningitis by enhancing bacterial clearing and downmodulating inflammation. In this study, TNF484 was applied in mice, which lacked TLR2 and exhibited a strong meningeal inflammation.

Toll-Like Receptor 2 Modulates the Proinflammatory Milieu in Staphylococcus aureus-Induced Brain Abscess

Infection and Immunity, 2005

Toll-like receptor 2 (TLR2) is a pattern recognition receptor (PRR) that plays an important role in innate immune recognition of conserved structural motifs on a wide array of pathogens, including Staphylococcus aureus. To ascertain the functional significance of TLR2 in the context of central nervous system (CNS) parenchymal infection, we evaluated the pathogenesis of S. aureus-induced experimental brain abscess in TLR2 knockout (KO) and wild-type (WT) mice. The expression of several proinflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor alpha, and macrophage inflammatory protein-2, was significantly attenuated in brain abscesses of TLR2 KO mice compared to WT mice during the acute phase of infection. Conversely, interleukin-17 (IL-17), a cytokine produced by activated and memory T cells, was significantly elevated in lesions of TLR2 KO mice, suggesting an association between innate and adaptive immunity in brain abscess. Despite these differences, brain abscess severity in TLR2 KO and WT animals was similar, with comparable mortality rates, bacterial titers, and blood-brain barrier permeability, implying a role for alternative PRRs. Expression of the phagocytic PRRs macrophage scavenger receptor type AI/AII and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was increased in brain abscesses of both TLR2 KO and WT mice compared to uninfected animals. However, LOX-1 induction in brain abscesses of TLR2 KO mice was significantly attenuated compared to WT animals, revealing that the TLR2-dependent signal(s) influence LOX-1 expression. Collectively, these findings reveal the complex nature of gram-positive bacterial recognition in the CNS which occurs, in part, through engagement of TLR2 and highlight the importance of receptor redundancy for S. aureus detection in the CNS.

The role of Toll-like receptors in CNS response to microbial challenge

Journal of Neurochemistry, 2006

The recent discovery of the family of Toll-like receptors has vastly expanded our understanding of the mechanisms by which the innate immune system recognizes and responds to a wide variety of microbial and endogenous pathogens. Toll-like receptors are transmembrane proteins that upon ligation with their cognate ligands trigger the production of cytokines, enzymes and other inflammatory agents. In the CNS Toll-like receptors are expressed predominantly by glial cells. In particular, the vastly abundant astrocytes are likely to be the major contributors to inflammatory responses within the CNS. Studies of the murine brain abscess model revealed that Toll-like receptor 2 plays a pivotal role in the generation of immune responses to Staphylococcus aureus. Although Toll-like receptor signaling is essential in antimicrobial defense, it may also lead to bystander injury of CNS tissue.

Both TLR2 and TLR4 Are Required for the Effective Immune Response in Staphylococcus aureus-Induced Experimental Murine Brain Abscess

American Journal of Pathology, 2008

Toll-like receptors (TLRs) play central roles in the innate reaction to bacterial products and transmit specific immune responses against these pathogens. TLRs are expressed on numerous cell types, including innate immune cells, and on astrocytes, neurons, and microglial cells of the central nervous system (CNS). Lipoproteins and lipopolysaccharides are specifically recognized by TLR2 and TLR4, respectively. We examined the in vivo role of TLR2 and TLR4 in Staphylococcus aureus-induced brain abscess. Phenotypically, 87% of TLR2 ؊/؊ mice and 43% of TLR4 ؊/؊ mice died whereas all wild-type (WT) mice recovered. Clearance of bacteria from the CNS was significantly delayed in TLR2 ؊/؊ mice compared with TLR4 ؊/؊ and WT animals. Recruitment of granulocytes and macrophages to the CNS, as well as microglial activation and expansion, was up-regulated in TLR2 ؊/؊ mice. Although inflammation persisted especially in the CNS of TLR2 ؊/؊ mice, but also of TLR4 ؊/؊ mice, WT mice terminated the infection more effectively. Collectively, these data show that the immune response to experimental S. aureus-induced brain abscess depends crucially on the recognition of S. aureus by TLR2 but that TLR4 is also required for an optimal intracerebral immune response in this disorder.

Toll-like receptors in brain abscess

Current topics in microbiology and immunology, 2009

Brain abscesses arise from a localized parenchymal infection, typically elicited by pyogenic bacteria such as Staphylococcus aureus. Despite improvements in detection and treatment strategies, brain abscesses continue to occur, with an increased prevalence in developing countries and immune-compromised patients. Adding to the seriousness of these infections is the recent emergence of antibiotic-resistant strains of bacteria, which are becoming more commonly associated with brain abscesses. Recent studies using a mouse experimental brain abscess model have revealed a complex role for Toll-like receptors (TLRs) in disease pathogenesis. Interestingly, TLR2 has limited impact on the innate immune response during the acute stage of brain abscess formation induced by S. aureus but influences adaptive immunity. In contrast, mice deficient in MyD88, a central adapter molecule for the majority of TLRs in addition to the IL-1R and IL-18R, demonstrate severe defects in innate immunity coupled ...