Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics (original) (raw)
Efficient, adaptive, locomotor function is critically important for maintaining our health and independence, but falls-related injuries when walking are a significant risk factor, particularly for more vulnerable populations such as older people and post-stroke individuals. Tripping is the leading cause of falls, and the swing-phase event Minimum Foot Clearance (MFC) is recognised as the key biomechanical determinant of tripping probability. MFC is defined as the minimum swing foot clearance, which is seen approximately mid-swing, and it is routinely measured in gait biomechanics laboratories using precise, high-speed, camera-based 3D motion capture systems. For practical intervention strategies designed to predict, and possibly assist, swing foot trajectory to prevent tripping, identification of the MFC event is essential; however, no technique is currently available to determine MFC timing in real-life settings outside the laboratory. One strategy has been to use wearable sensors,...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact