Toward the ‘golden’ era: The status in uncovering the regulatory control of carotenoid accumulation in plants (original) (raw)

Carotenoid Metabolism in Plants

Molecular Plant, 2015

Carotenoids are mostly C 40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.

Plant carotenoids: recent advances and future perspectives

Molecular Horticulture, 2022

Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.

Travel advice on the road to carotenoids in plants

Plant Science, 2010

The carotenoids are a major class of organic pigments produced in plants and microbes. They fulfill many essential physiological and developmental processes in plants, and also have important roles in animal health and nutrition. As such they have been the focus of multidisciplinary research programs aiming to understand how they are synthesized in microbes and plants, and to clone genes encoding the corresponding enzymes and express them to modulate carotenoid production in recombinant microbial and plant systems. Our deeper understanding of carotenogenic gene regulation, in concert with the development of more effective multi-gene transfer systems for plants, has facilitated more ambitious strategies for the modulation of plant carotenoid biosynthesis not only in laboratory models but more importantly in staple food crops. Here we review the genetic and molecular tools and resources available for fundamental and applied carotenoid research, emphasizing recent achievements in carotenoid engineering and potential future objectives for carotenoid research in plants.

In vivo functions of carotenoids in higher plants

1996

The function of the long-chain, highly unsaturated carotenoids of higher plants in photo- protection is becoming increasingly well understood, while at the same time their function in other proc- esses, such as light collection, needs to be reex- amined. Recent progress in this area has been fueled by more accurate determinations of the photophysi- cal properties of these molecules, as

Carotenoid Metabolism: Biosynthesis, Regulation, and Beyond

Journal of Integrative Plant Biology, 2008

Carotenoids are indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied. Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis, regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation

Applied Microbiology and Biotechnology, 2003

Please find attached the final pdf file of your contribution, which can be viewed using the Acrobat Reader, version 3.0 or higher. We would kindly like to draw your attention to the fact that copyright law is also valid for electronic products. This means especially that: • You may not alter the pdf file, as changes to the published contribution are prohibited by copyright law. • You may print the file and distribute it amongst your colleagues in the scientific community for scientific and/or personal use.