Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome (original) (raw)
Related papers
Comparative Gene Expression Analysis of Mouse and Human Cardiac Maturation
Genomics, proteomics & bioinformatics, 2016
Understanding how human cardiomyocytes mature is crucial to realizing stem cell-based heart regeneration, modeling adult heart diseases, and facilitating drug discovery. However, it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomyocytes mature during fetal development and childhood, as well as difficulty in avoiding variations among individuals. Using model animals such as mice can be a useful strategy; nonetheless, it is not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice. Therefore, we performed a comparative gene expression analysis of mouse and human samples. First, we examined two distinct mouse microarray platforms for shared gene expression profiles, aiming to increase reliability of the analysis. We identified a set of genes displaying progressive changes during maturation based on principal component analysis. Second, we demonstrated that the gene...
Proliferation of cardiomyocytes: a question unresolved
Frontiers in bioscience (Elite edition), 2009
In the past, human heart has been considered a post-mitotic organ formed by cells, like adult cardiomyocytes, terminally differentiated and incapable of proliferation. This paradigm has been shaken by recent works indicating that postnatal adult cardiomyocytes are able to re-enter in the cell cycle and proliferate. In this view, the understanding of main candidates regulating cardiomyocyte cell cycle is of vital importance for future clinical approach.
Dynamics of metabolism and regulation of epigenetics during cardiomyocytes maturation
Cell Biology International, 2022
Maturation is the last step of heart growth that prepares the organ over the lifetime of the mammal for powerful, effective, and sustained pumping. Structural, gene expression, physiological, and functional specialties of cardiomyocytes describe this mechanism as the heart transits from fetus to adult phases. The main cornerstones of maturation of cardiomyocytes are reviewed and primary regulatory mechanisms are summarized to facilitate and organize these cellular activities. During embryonic development, cardiomyocytes proliferate rigorously but leave the cell cycle permanently immediately after the parturition of the child and experience terminal differentiation. The activation of a host of genes specific for the mature heart is correlated with the exit from the cell cycle. Even when exposed to mitogenic stimuli, the bulk of mature cardiomyocytes do not re‐join the cell cycle. The reason for this permanent exit from the cell cycle is shown to be linked with stable switching off of the genes of the cell cycle directly involved in the G2/M transition phase and cytokinesis development. Researchers also trying to explain the molecular mechanism involved in stable inhibition of the gene and described structural changes (epigenetic and chromatin) in this mechanism. Substantial developments in the future with advances in the scientific platforms used for cardiomyocyte maturation research will broaden our understanding of this mechanism and result in better maturation of cardiomyocyte‐derived pluripotent stem cells and effective treatment approaches for cardiovascular diseases.
Early Postnatal Cardiac Stress Does Not Influence Ventricular Cardiomyocyte Cell-Cycle Withdrawal
Journal of Cardiovascular Development and Disease
Congenital heart disease (CHD) is the most common birth defect. After birth, patients with CHD may suffer from cardiac stress resulting from abnormal loading conditions. However, it is not known how this cardiac burden influences postnatal development and adaptation of the ventricles. To study the transcriptional and cell-cycle response of neonatal cardiomyocytes to cardiac stress, we used a genetic mouse model that develops left ventricular volume overload within 2 weeks after birth. The increased volume load caused upregulation of the cardiac stress marker Nppa in the left ventricle and interventricular septum as early as 12 days after birth. Transcriptome analysis revealed that cardiac stress induced the expression of cell-cycle genes. This did not influence postnatal cell-cycle withdrawal of cardiomyocytes and other cell types in the ventricles as measured by Ki-67 immunostaining.
Transcriptional Regulation of Cardiac Progenitor Cell Populations
Circulation Research, 2004
Transcriptome-wide analysis of dynamically regulated progenitor cell populations has the potential to elucidate key aspects of cardiac development. The heart, as the first organ to develop in the mammal, is a technically challenging but clinically relevant target for study. To define the transcriptional program of the cardiac progenitor, we used a novel transgenic strategy and fluorescence-activated cell sorting to reliably label and isolate cardiac progenitors directly from mouse embryos. Pure populations of cardiac progenitor cells were isolated from the cardiac crescent and 2 subsequent stages of heart development: the linear heart tube and the looping heart. RNA was isolated from stage-specific cardiac progenitors and subjected to transcriptome analysis by oligonucleotide array hybridization. The cardiac transcriptional regulatory programs were compared with the molecular programs of age-matched noncardiac embryonic cells, embryonic stem cells, adult cardiomyocytes, and each oth...
Neonatal cardiomyocyte ploidy reveals critical windows of heart development
International Journal of Cardiology, 2010
Background: The aim of our study was to find out, whether cardiomyocyte genome duplication participates in developmental programming of adult hypertension and impaired heart aerobic capacity, and if it does, whether ploidy-related programming is reversible and what are the timeframes of the most critical window. For this propose we studied the effect of the well-known factors of programming, including growth retardation, infection, and cardiac overload on the level of neonatal cardiomyocyte ploidy, protein content and shape. Methods: Using the model of rat cryptosporidial gastroenteritis, we shifted the time point of infection day by day through the neonatal period and traced the immediate and postponed effects of disease on isolated cardiomyocyte ploidy, phenotype, and protein content. Results: We found that gastroenteritis caused cardiac atrophy and a burst-like premature genome accumulation, elongation, narrowing and protein loss in the cardiomyocytes. These changes resulted in sharp increase of DNA content at the expense of contractile proteins. We also revealed clear indications of critical window of heart development during the peak of cardiomyocyte transition from proliferation to hypertrophy. After the rehabilitation, the atrophy of heart and cardiomyocyte remodelling showed a conspicuous restoration, whereas the hyperpolyploidization did not regress. An irreversible manner of excessive genome duplication and its well-known ability to alter gene expression confirm our suggestion that it is implicated in the ontogenetic programming of heart development. Conclusion: We provided the first evidence that developmental programming can operate through cardiomyocyte genome duplication and that the critical window coincides with cell transition from proliferation to hypertrophy. Our data help determine the timing of critical window for human heart and would allow successful prevention of human cardiac abnormalities even before they become tangible.
Cardiomyocytes – a Transcriptome Analysis
2009
The P19CL6 cell-line, a clone of the P19 mouse embryonal carcinoma cell-line, has been extensively used as a model for cardiomyocytes as these cells can be differentiated into a cardiomyocyte phenotype upon incubation with dimethyl sulfoxide. Uniquely, these cells can be observed to "beat" when monitored by microscopy. We started investigating the response of P19CL6 cells to fatty acids, but highly variable results lead us to investigate the phenotype of the P19CL6 cells in more depth. In this study we demonstrated that the P19CL6 cells are responsive to adrenaline, but loose the "beating" phenotype after 16 passages in culture. Analysis of specific mRNA transcripts indicated that the P19CL6 cells express both cardiac-and skeletal muscle-specific genes, while global analysis of microarray data showed clear differences between the P19CL6 cells and cardiac tissue of embryonic or adult origin. In conclusion, our observations suggest caution in the use of the P19CL6 cells as a model of cardiomyocytes unless rigorous validation for the intended analysis has been undertaken.
The Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss
Circulation, 2015
Background— Heart development is tightly regulated by signaling events acting on a defined number of progenitor and differentiated cardiac cells. Although loss of function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhibit a robust mechanism for regeneration after extensive cell loss. Methods and Results— By combining a conditional cell ablation approach with a novel blastocyst complementation strategy, we generated murine embryos that exhibit a full spectrum of cardiac progenitor cell or cardiomyocyte ablation. Remarkably, ablation of up to 60% of cardiac progenitor cells at embryonic day 7.5 was well tolerated and permitted embryo survival. Ablation of embryonic cardiomyocytes to a similar degree (50% to 60%) at embryonic day 9.0 could be fully rescued by residual myocytes with no obvious adult cardiac fu...
Journal of Molecular and Cellular Cardiology, 2011
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are being developed for tissue repair and as a model system for cardiac physiology and pathophysiology. However, the signaling requirements of their growth have not yet been fully characterized. We showed that hESC-CM retain their capacity for increase in size in long-term culture. Exposing hESC-CM to hypertrophic stimuli such as equiaxial cyclic stretch, angiotensin II, and phenylephrine (PE) increased cell size and volume, percentage of hESC-CM with organized sarcomeres, levels of ANF, and cytoskeletal assembly. PE effects on cell size were separable from those on cell cycle. Changes in cell size by PE were completely inhibited by p38-MAPK, calcineurin/FKBP, and mTOR blockers. p38-MAPK and calcineurin were also implicated in basal cell growth. Inhibitors of ERK, JNK, and CaMK II partially reduced PE effects; PKG or GSK3β inhibitors had no effect. The role of p38-MAPK was confirmed by an additional pharmacological inhibitor and adenoviral infection of hESC-CM with a dominant-inhibitory form of p38-MAPK. Infection of hESC-CM with constitutively active upstream MAP2K3b resulted in an increased cell size, sarcomere and cytoskeletal assembly, elongation of the cells, and induction of ANF mRNA levels. siRNA knockdown of p38-MAPK inhibited PE-induced effects on cell size. These results reveal an important role for active protein kinase signaling in hESC-CM growth and hypertrophy, with potential implications for hESC-CM as a novel in vitro test system. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".