Consistency and functional specialization in the default mode brain network (original) (raw)

Default mode network as revealed with multiple methods for resting-state functional MRI analysis

Journal of Neuroscience Methods, 2008

Recently, human brain activity during a resting-state has attracted increasing attention. Several studies have found that there are two networks: the default mode network and its anti-correlation network. Some studies have subsequently showed that the functions of brain areas within the default mode network are crucial in human mental activity. To further discern the brain default mode network as well as its anti-correlation network during resting-state, we used three methods to analyze resting-state functional magnetic resonance imaging (fMRI) data; regional homogeneity analysis, linear correlation and independent component analysis, on four groups of dataset. Our results showed the existence of these two networks prominently and consistently during a resting-and conscious-state across the three methods. This consistency was exhibited in four independent groups of normal adults. Moreover, the current results provided evidences that the brain areas within the two anti-correlated networks are highly integrated at both the intra-and inter-regional level.

The Brain's Default Mode Network

Annual Review of Neuroscience, 2015

The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease....

Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load

2009

Background: Recent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed. Methodology/Principal Findings: Four resting-state fMRI sessions were acquired: 1) eyes-closed (EC) (used to generate the DMN mask); 2) EC; 3) eyes-open with no fixation (EO); and 4) eyes-open with a fixation (EO-F). The 2-4 sessions were counterbalanced across participants (n = 20, 10 males). We examined the statistical differences in both functional connectivity and regional amplitude of low frequency fluctuation (ALFF) within the DMN among the 2-4 resting-state conditions (i.e., EC, EO, and EO-F). Although the connectivity patterns of the DMN were visually similar across these three different conditions, we observed significantly higher functional connectivity and ALFF in both the EO and the EO-F conditions as compared to the EC condition. In addition, the first and second resting EC conditions showed significant differences within the DMN, suggesting an order effect on the DMN activity. Conclusions/Significance: Our findings of the higher DMN connectivity and regional spontaneous activities in the resting state with the eyes open suggest that the participants might have more non-specific or non-goal-directed visual information gathering and evaluation, and mind wandering or daydreaming during the resting state with the eyes open as compared to that with the eyes closed, thus providing insights into the understanding of unconstrained mental activity within the DMN. Our results also suggest that it should be cautious when choosing the type of a resting condition and designating the order of the resting condition in multiple scanning sessions in experimental design.

Spontaneous Brain Activity in the Default Mode Network is Associated with Different Resting-State Conditions with Limited Cognitive Load

NeuroImage, 2009

Background: Recent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed.

A distinct intra-individual suppression subnetwork in the brain’s default mode network across cognitive tasks

Cerebral Cortex

Suppression of the brain’s default mode network (DMN) during external goal-directed cognitive tasks has been consistently observed in neuroimaging studies. However, emerging insights suggest the DMN is not a monolithic “task-negative” network but is comprised of subsystems that show functional heterogeneity. Despite considerable research interest, no study has investigated the consistency of DMN activity suppression across multiple cognitive tasks within the same individuals. In this study, 85 healthy 15- to 25-year-olds completed three functional magnetic resonance imaging tasks that were designed to reliably map DMN suppression from a resting baseline. Our findings revealed a distinct suppression subnetwork across the three tasks that comprised traditional DMN and adjacent regions. Specifically, common suppression was observed in the medial prefrontal cortex, the dorsal-to-mid posterior cingulate cortex extending to the precuneus, and the posterior insular cortex and parietal oper...

Modulatory interactions between the default mode network and task positive networks in resting-state

PeerJ, 2014

The two major brain networks, i.e., the default mode network (DMN) and the task positive network, typically reveal negative and variable connectivity in resting-state. In the present study, we examined whether the connectivity between the DMN and different components of the task positive network were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial independent component analysis was first conducted to identify components that represented networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was conducted between pairs of these networks to identify networks or regions that showed modulatory interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory interactions between the DMN, salience, and executive networks. Together with the anatomical pr...

Dynamic Subcortical Modulators of Human Default Mode Network Function

2021

The brain’s ‘default mode network’ (DMN) enables flexible switching between internally and externally focused cognition. Precisely how this modulation occurs is not well understood, although may involve key subcortical mechanisms, including hypothesized influences from the basal forebrain (BF) and mediodorsal thalamus (MD). Here, we used ultra-high field (7T) functional magnetic resonance imaging to examine the involvement of the BF and MD across states of task-induced DMN activity modulation. Specifically, we mapped DMN activity suppression (‘deactivation’) when participants transitioned between rest and externally focused task performance, as well as DMN activity engagement (‘activation’) when task performance was internally (i.e., self) focused. Consistent with recent rodent studies, the BF showed overall activity suppression with DMN cortical regions when comparing the rest to external task conditions. Further analyses, including dynamic causal modelling, confirmed that the BF d...

A study of within-subject reliability of the brain’s default-mode network

Magnetic Resonance Materials in Physics, Biology and Medicine, 2019

Objective Resting-state functional magnetic resonance imaging (fMRI) is promising for Alzheimer's disease (AD). This study aimed to examine short-term reliability of the default-mode network (DMN), one of the main haemodynamic patterns of the brain. Materials and methods Using a 1.5 T Philips Achieva scanner, two consecutive resting-state fMRI runs were acquired on 69 healthy adults, 62 patients with mild cognitive impairment (MCI) due to AD, and 28 patients with AD dementia. The anterior and posterior DMN and, as control, the visual-processing network (VPN) were computed using two different methodologies: connectivity of predetermined seeds (theory-driven) and dual regression (data-driven). Divergence and convergence in network strength and topography were calculated with paired t tests, global correlation coefficients, voxel-based correlation maps, and indices of reliability. Results No topographical differences were found in any of the networks. High correlations and reliability were found in the posterior DMN of healthy adults and MCI patients. Lower reliability was found in the anterior DMN and in the VPN, and in the posterior DMN of dementia patients. Discussion Strength and topography of the posterior DMN appear relatively stable and reliable over a short-term period of acquisition but with some degree of variability across clinical samples.

Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging

NeuroImage, 2014

The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08 Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.