New evidences on Tau–DNA interactions and relevance to neurodegeneration (original) (raw)

Tau Function and Dysfunction in Neurons

Molecular Neurobiology, 2002

In this review, we summarize the main biochemical characteristics of tau, a protein that in its unmodified form plays a physiological role in stabilizing assembled microtubules. This microtubule-associated protein participates in other pathological states briefly summarized here. The mechanisms for tau polymerization into fibrillar polymers is a subject of active research. We revisit here aspects of the microscopic features of the formation of "paired helical filaments," the product of tau aggregation leading to further proteinaceous aggregates referred to as "neurofibrillary tangles." This review also describes some of the possible transformations experienced by tau proteins in the formation of pathological polymers, including structural changes, phosphorylation by specific kinases, oxidation, glycation, or intersection with other molecules such as glycoaminoglycans. Finally, we summarize the main lessons derived from the generation of single and double transgenic models attempting to reproduce human tau pathology.

Microtubule-dependent Oligomerization of Tau: IMPLICATIONS FOR PHYSIOLOGICAL TAU FUNCTION AND TAUOPATHIES

Journal of Biological Chemistry, 2003

The accumulation of abnormal tau filaments is a pathological hallmark of many neurodegenerative diseases. In 1998, genetic analyses revealed a direct linkage between structural and regulatory mutations in the tau gene and the neurodegenerative disease, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Importantly, the FTDP-17 phenotype is transmitted in a dominant rather than a recessive manner. However, the underlying molecular mechanisms causing disease remain uncertain. The most common molecular mechanism generating dominant phenotypes is the loss of function of a multimeric complex containing both mutant and wild-type subunits. Therefore, we sought to determine whether tau might normally function as a multimer. We co-incubated 35 S-radiolabeled tau and biotinylated tau with taxol stabilized microtubules, at very low molar ratios of tau to tubulin. Subsequent covalent cross-linking followed by affinity-precipitation of the biotinylated tau revealed the formation of microtubule-dependent tau oligomers. We next used atomic force microscopy to independently assess this conclusion. Our results are consistent with the hypothesis that tau forms oligomers upon binding to microtubules. In addition to providing insights into normal tau action, our findings lead us to propose that one mechanism by which mutations in tau may cause cell death is through the formation of tau complexes containing mutant tau molecules in association with wild-type tau. These wildtype-mutant tau complexes may possess altered biological and/or biophysical properties that promote onset of the FTDP-17 phenotype, including neuronal cell death by either altering normal tau-mediated regulation of microtubule-dependent cellular functions and/or promoting the formation of pathological tau aggregates.

Brief update on different roles of tau in neurodegeneration

IUBMB Life, 2011

Both Alzheimer's disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term ''tauopathies'' for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-b toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.

Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002

Formation of neurofibrillary tangles (NFTs) is a common neuropathological feature found in several neurodegenerative diseases, including Alzheimer's disease. We have developed a transgenic (Tg) mouse expressing mutant human tau (V337M), derived from frontotemporal dementia parkinsonism-17. V337M Tg mice revealed tau aggregations in the hippocampus, which fulfills the histological criteria for NFTs in human neurodegenerative diseases. Concurrent with the accumulation of RNA and phosphorylated tau, neurons exhibited morphological characteristics of degenerating neurons, which include a loss of microtubules, accumulation of ribosomes, plasma and nuclear membrane ruffling, and swelling of the Golgi network. Thus, mutant tau induces neuronal degeneration associated with the accumulation of RNA and phosphorylated tau. The functional consequences of this neuronal degeneration was evidenced by the reduction of hippocampal neural activity and behavioral abnormality in Tg mice.

Nuclear face of Tau: an inside player in neurodegeneration

Acta Neuropathologica Communications, 2023

Tau (Tubulin associated unit) protein is a major hallmark of Alzheimer's disease (AD) and tauopathies. Tau is predominantly an axonal protein with a crucial role in the stabilization and dynamics of the microtubules. Since the discovery of Tau protein in 1975, research efforts were concentrated on the pathophysiological role of Tau protein in the context of the microtubules. Although, for more than three decades, different localizations of Tau protein have been discovered e.g., in the nuclear compartments. Discovery of the role of Tau protein in various cellular compartments especially in the nucleus opens up a new fold of complexity in tauopathies. Data from cellular models, animal models, and the human brain indicate that nuclear Tau is crucial for genome stability and to cope with cellular distress. Moreover, it's nature of nuclear translocation, its interactions with the nuclear DNA/RNA and proteins suggest it could play multiple roles in the nucleus. To comprehend Tau pathophysiology and efficient Taubased therapies, there is an urgent need to understand whole repertoire of Tau species (nuclear and cytoplasmic) and their functional relevance. To complete the map of Tau repertoire, understanding of various species of Tau in the nucleus and cytoplasm, identification if specific transcripts of Tau, isoforms and post-translational modifications could foretell Tau's localizations and functions, and how they are modified in neurodegenerative diseases like AD, is urgently required. In this review, we explore the nuclear face of Tau protein, its nuclear localizations and functions and its linkage with Alzheimer's disease.

Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity

The EMBO Journal, 2015

In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism for has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in absence of endogenous tau. We then tested if the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numebrs but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.

Tau protein in neurodegenerative diseases - a review

2017

The study of rare, inherited forms of different diseases resulted in the discovery of gene defects that cause inherited variants of the respective diseases. The defective genes were found to encode major molecular players leading to the neuropathological lesions or factors that characterize these diseases. The exact role of the tau protein in the neurodegenerative process is still under debate. It is very important to understand the normal biological roles of tau and the specific events that induce tau to become neurotoxic. Tau is the major microtubule-associated protein (MAP) of a mature neuron. The other neuronal MAPs are MAP1 and MAP2. These three MAPs perform similar function, promoting assembly and stability of microtubules. Tau protein was isolated as a microtubule-associated factor in the porcine brain. It was isolated as a protein that co-purified with tubulin and had the ability to promote microtubule assembly in vitro. Normal adult human brain tau contains 2-3 moles phosph...

Disruption of neuronal function by soluble hyperphosphorylated tau in a Drosophila model of tauopathy

Biochemical Society Transactions, 2010

Axonal microtubules are essential for transport of materials to the synapse. Compromised microtubules and synaptic loss have been demonstrated in AD (Alzheimer's disease), which is believed to contribute to cognitive dysfunction before neuronal death in the early stages of the disease. The mechanism by which hyperphosphorylated tau, the building block of neurofibrillary tangles, one of the pathological hallmarks of AD, disrupts neuronal and synaptic function is unclear. There is a theory that hyperphosphorylated tau does not bind effectively to microtubules and is no longer able to function in stabilizing them, thus axonal transport can no longer proceed efficiently. This leads to synaptic dysfunction. We have tested this theory in a Drosophila model of tauopathies in which we expressed human tau (h-tau). Using this model, we have tested all aspects of this hypothesis and have demonstrated that axonal transport does become compromised in the presence of hyperphosphorylated h-tau...

Mechanisms of tau-induced neurodegeneration

Acta Neuropathologica, 2009

Alzheimer disease (AD) and related tauopathies are histopathologically characterized by a specific type of slow and progressive neurodegeneration, which involves the abnormal hyperphosphorylation of the microtubule associated protein (MAP) tau. This hallmark, called neurofibrillary degeneration, is seen as neurofibrillary tangles, neuropil threads, and dystrophic neurites and is apparently required for the clinical expression of AD, and in related tauopathies it leads to dementia in the absence of amyloid plaques. While normal tau promotes assembly and stabilizes microtubules, the nonfibrillized, abnormally hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, and disrupts microtubules. The abnormal hyperphosphorylation of tau, which can be generated by catalysis of several different combinations of protein kinases, also promotes its misfolding, decrease in turnover, and self-assembly into tangles of paired helical and or straight filaments. Some of the abnormally hyperphosphorylated tau ends up both amino and C-terminally truncated. Disruption of microtubules by the non-fibrillized abnormally hyperphosphorylated tau as well as its aggregation as neurofibrillary tangles probably impair axoplasmic flow and lead to slow progressive retrograde degeneration and loss of connectivity of the affected neurons. Among the phosphatases, which regulate the phosphorylation of tau, protein phosphatase-2A (PP2A), the activity of which is downregulated in AD brain, is by far the major enzyme. The two inhibitors of PP-2A, and , which are overexpressed in AD, might be responsible for the decreased phosphatase activity. AD is multifactorial and heterogeneous and involves more than one etiopathogenic mechanism.