Effects of Carbon Substitution on Electronic Properties of the Ultra-Small Boron Nitride Nanotube Using Density Functional Theory (original) (raw)
Related papers
The Ultra-Small Armchair Boron Nitride Nanotubes Study Using a Density Functional Theory Method
Journal of Physics: Conference Series, 2020
A density functional theory (DFT) method was used to study the structures, stability and band gaps of the ultra-small armchair boron nitride nanotubes (BNNTs). We define the ultra-small size of the armchair boron nitride nanotubes (BNNTs) as a nanotube with diameter less than 1 nm. Each armchair nanotube’s stability and band gap was obtained varied by varying the size of nanotube diameters up to 1 nm. The larger size of diameter the higher stability and wider armchair nanotubes band gap. The results of the ultra-small armchair calculation confirm the same trend of properties with the available calculation data of ultra-small zigzag boron nitride nanotubes (BNNTs).
Structural and electronic properties of sulphur-doped boron nitride nanotubes
Solid State Communications, 2012
First-principles calculations based on density functional theory were performed to study the structural and electronic properties of sulphur substitution-doped boron nitride (BN) nanotubes, using the theory as implemented in SIESTA code, which uses non-conserving pseudo-potentials in fully non-local form and atomic orbitals as the basis set. The generalized gradient approximation (GGA) was used for the exchange-correlation (XC) potential. The tube selected was a (10, 0) BN nanotube that fell in the range of energy gap independent of the tube diameter. The electronic and structural properties for sulphur substitution in the boron and the nitrogen sites were studied. The structural arrangement in equilibrium conditions for S shows an outward radial deformation around the sulphur atom in the tube. The bandgap of the pristine BN nanotubes was found to be significantly modified on doping.
Chemical Physics Letters, 2012
Using density functional theory, we study physical properties of boron nitride nanotubes (BNNTs) with the substitutional carbon pair defect. We also consider the Stone-Wales (SW) rearrangement of the CC pair defect in the BNNT. The formation energy of an SW defect of the carbon dimer is approximately 3.1 eV lower than that of the SW-transformed B-N pair in the undoped BNNT. The activation energies show that the SW defect in the C-doped BNNT may be experimentally observed with a higher probability than in the undoped BNNT. Finally, we discuss the localized states originating from the carbon pair impurities.
akademik.unsri.ac.id
A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11 B and 15 N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.
Comparative theoretical study of single-wall carbon and boron-nitride nanotubes
Physical Review B, 2003
We present a comprehensive comparative study of properties of BN and C nanotubes using a full potential linear combination of atomic orbitals approach, as well as a planewave pseudopotential method. This paper covers our results on the structural, mechanical, vibrational, and electronic properties, examining in detail the effects of intertube coupling. Structural aspects and mechanical properties are discussed and compared in BN and C nanotubes, and to experiment. Upshifts in the values of the radial breathing modes, due to intertube coupling, are found to be small and systematic, about 2% in zigzag nanotubes, and varying from 2 to 7 % in armchair tubes, for both materials. Finally, the effects of intertube interactions on the van Hove singularities are discussed.
Mechanical and electronic properties of carbon and boron–nitride nanotubes
Carbon, 2000
In this contribution we provide an overview of our recent work on the mechanical and electronic properties of carbon and boron-nitride (BN) nanotubes, which are of key relevance to practical applications and to our present understanding of low-dimensional structures. On the mechanical properties we look at the nanotube axial stiffness, bending and torsion dynamics. We found that chiral tubes exhibit an interesting asymmetric torsional behaviour with respect to left and right twist that is absent in armchair or zig-zag tubes. Topological defects are seen to modify slightly the mechanical response of the carbon network under applied strain. On the electronic properties we present an analysis of the role of the environment in nanotube density of states relevant for scanning tunneling spectroscopy (STS). Finally we present results on the electronic density of states for BN nanotubes that can be used as a complementary fingerprint of those structures in STS experiments and for their applications in composite (C-BN) electronic devices.
Results in Materials, 2019
Ab initio calculations based on density functional theory was carried out to study the electronic properties of (3,3), (4,2), (5,2) and (6,0) boron nitride nanotubes when interacting with nickel, titanium, palladium and gold metal atoms. These interactions occurred via adsorption, intercalation, nitrogen substitutional doping and boron substitutional doping. The wide band gaps intrinsic to the pristine boron nitride nanotubes were successfully tuned upon interaction with the metal atoms irrespective of the type of interactions. However, for most of the interactions that occurred via intercalation and nitrogen substitutional doping, the boron nitride nanotube was found to possess semi-metallic properties. More states were added in the density of states upon interaction in which the d orbital of the transition metal atoms was found to be the major contributor to the increase in density of states.
Crystals, 2022
This study investigates the effect of exchange-correlation on the electronic properties of hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes (SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together with different parametrizations (local density approximation (LDA) formulated by Perdew Zunga (PZ) and the generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) and Perdew–Wang 91 (PW91)), were used in this study. It has been observed that the disappearance of interface states in the band gap was due to the discontinuity of the π–π bonds in some segments of SWCNT, which resulted in the asymmetric distribution in the two segments. This work has successfully created a band gap in SWCBNNT, where the PBE exchange-correlation functional provides a well-agreed band gap value of 1.8713 eV. Effects of orbitals on electronic properties have also been studied elaborately. It has been id...