Grothendieck ring of pretriangulated categories (original) (raw)

Abstract

We consider the abelian group PTPTPT generated by quasi-equivalence classes of pretriangulated DG categories with relations coming from semi-orthogonal decompositions of corresponding triangulated categories. We introduce an operation of "multiplication" bullet\bulletbullet on the collection of DG categories which makes this abelian group into a commutative ring. A few applications are considered: representability of "standard" functors between derived categories of coherent sheaves on smooth projective varieties and a construction of an interesting motivic measure.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (19)

  1. F. Bittner: The universal Euler characteristic for varieties of characteristic zero, arXiv: math.AG/0111062.
  2. M. Böckstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234.
  3. A. I. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR -Izvestiya 34 (1990).
  4. A. I. Bondal, M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Math. USSR -Izvestiya 35 (1990), No. 3, 519-541.
  5. A. I. Bondal, M. M. Kapranov, Enhanced triangulated categories, Math. USSR -Sbornik 70 (1991), No. 1, 93-107.
  6. A. I. Bondal, D. O. Orlov, Semiorthogonal decompositions of algebraic varieties, math.AG/9506012.
  7. A. I. Bondal, M. Van den Bergh, Generators and representability of func- tors in commutative and noncommutative geometry, Moscow Math. Jour- nal 3 No. 1 (2003), 1-36.
  8. P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol 2, 111-195.
  9. V. Drinfeld, DG quotients of DG categories, arXiv:math.KT/0210114.
  10. R. Hartshorne, Residues and Duality, LNM 20, 1966.
  11. B. Keller, Deriving DG categories, Ann. scient. Éc. Norm. Sup., 4 e série, t. 27, (1994), 63-102.
  12. B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. 40 (1988), 239-253.
  13. M. Larsen V. A. Lunts, Motivic measures and stable birational geometry, Moscow Math. Journal 3, No. 1, (2003) 85-95.
  14. E. Looijenga, Motivic measures, math.AG/0006220.
  15. S. Mukai, Duality between D(X) and D( X) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175.
  16. A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yau and the smashing subcategories of Bousfield and Ravenel, Ann. Aci. École Norm. Sup., serie 4, 25, (1992), No. 5, 547- 566.
  17. D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math. 41, (1993), No. 1, 133-141.
  18. B. Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), 493-498.
  19. D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. of Math., 106, (1984), 351-414.