Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts (original) (raw)

2014, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

This study is primarily focused on proving the potential of miniaturized Raman systems to detect any biomolecular and mineral signal in natural geobiological samples that are relevant for future application of the technique within astrobiologically aimed missions on Mars. A series of evaporites of varying composition and origin from two extremely dry deserts were studied, namely Atacama and Mojave. The samples represent both dry evaporitic deposits and recent evaporitic efflorescences from hypersaline brines. The samples comprise halite and different types of sulfates and carbonates. The samples were analysed in two different ways: (i) directly as untreated rocks and (ii) as homogenized powders. Two excitation wavelengths of miniaturized Raman spectrometers were compared: 532 and 785 nm. The potential to detect carotenoids as biomarkers on Mars compared with the potential detection of carbonaceous matter using miniaturized instrumentation is discussed.

Will Raman meet bacteria on Mars? An overview of the optimal Raman spectroscopic techniques for carotenoid biomarkers detection on mineral backgrounds

Netherlands Journal of Geosciences - Geologie en Mijnbouw, 2015

Raman spectroscopy appears to be an ideal technique for the initial detection of biomarkers, molecules that are potentially indicative of life on planetary bodies elsewhere in our solar system. Carotenoids are particularly useful biomarkers as they are used widely across the species, relatively resistant to breakdown and no inorganic source is known. They are used by microorganisms in their cell membranes for protection against UV radiation. In this paper we focus on the detection of carotenoids in microorganisms within a mineral matrix. We compare the Raman signatures of pure compounds with those of laboratory-made mixtures of β-carotene and minerals. Carotenoids covered by 2.5 mm of translucent calcite or 40 mm of transparent halite were detected using a conventional confocal Raman microscope. To improve sensitivity and hence detection levels, Raman measurements were successfully performed under resonant conditions. Raman analysis can be compromised by fluorescence interference. D...

Detection of carotenoids of halophilic prokaryotes in solid inclusions inside laboratory-grown chloride and sulfate crystals using a portable Raman spectrometer: applications for Mars exploration

FEMS Microbiology Letters, 2019

Inclusions in evaporitic minerals sometimes contain remnants of microorganisms or biomarkers, which can be considered as traces of life. Raman spectroscopy with resonance enhancement is one of the best analytical methods to search for such biomarkers in places of interest for astrobiology, including the surface and near subsurface of planet Mars. Portable Raman spectrometers are used as training tools for detection of biomarkers. Investigations of the limits and challenges of detecting biomolecules in crystals using Raman spectroscopy is important because natural occurrences often involve mineral assemblages as well as their fluid and solid inclusions. A portable Raman spectrometer with 532 nm excitation was used for detection of carotenoid biomarkers: salinixanthin of Salinibacter ruber (Bacteroidetes) and α-bacterioruberin of Halorubrum sodomense (Halobacteria) in laboratory-grown artificial inclusions in compound crystals of several chlorides and sulfates, simulating entrapment o...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.