The Robustness of Counterfactual Explanations Over Time (original) (raw)

Counterfactual Explanations for Machine Learning: Challenges Revisited

sahil verma

2021

View PDFchevron_right

ReLACE: Reinforcement Learning Agent for Counterfactual Explanations of Arbitrary Predictive Models

Gabriele Tolomei

ArXiv, 2021

View PDFchevron_right

Semantics and explanation: why counterfactual explanations produce adversarial examples in deep neural networks

Kieran Browne

ArXiv, 2020

View PDFchevron_right

FCE: Feedback Based Counterfactual Explanations for Explainable AI

Muhammad Suffian

IEEE Access

View PDFchevron_right

Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications

Yu-liang Chou

Information Fusion, 2021

View PDFchevron_right

Counterfactual Models for Fair and Adequate Explanations

Nicholas Asher

Machine Learning and Knowledge Extraction, 2022

View PDFchevron_right

A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations

Michele Loi

2020

View PDFchevron_right

Counterfactual Explanations Using Optimization With Constraint Learning

S. Ilker Birbil

2022

View PDFchevron_right

ViCE: Visual Counterfactual Explanations for Machine Learning Models

Steffen Holter

2020

View PDFchevron_right

Truthful Meta-Explanations for Local Interpretability of Machine Learning Models

Ioannis Mollas

arXiv (Cornell University), 2022

View PDFchevron_right

Real-Time, Model-Agnostic and User-Driven Counterfactual Explanations Using Autoencoders

Jokin Labaien

Applied Sciences

View PDFchevron_right

Alterfactual Explanations -- The Relevance of Irrelevance for Explaining AI Systems

Elisabeth Andre

arXiv (Cornell University), 2022

View PDFchevron_right

Stable and actionable explanations of black-box models through factual and counterfactual rules

Riccardo Guidotti

Data Mining and Knowledge Discovery, 2022

View PDFchevron_right

Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees

Faisal Hamman

arXiv (Cornell University), 2023

View PDFchevron_right

On the Robustness of Counterfactual Explanations to Adverse Perturbations

Saverio Fracaros

ArXiv, 2022

View PDFchevron_right

Proposed Guidelines for the Responsible Use of Explainable Machine Learning

Navdeep Gill

2019

View PDFchevron_right

Multi-Class Counterfactual Explanations using Support Vector Data Description

Alberto Carlevaro

IEEE transactions on artificial intelligence, 2022

View PDFchevron_right

Explaining Explanations: An Overview of Interpretability of Machine Learning

ayesha bajwa

2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)

View PDFchevron_right

Pitfalls of Explainable ML: An Industry Perspective

sahil verma

ArXiv, 2021

View PDFchevron_right

Multi-Objective Counterfactual Explanations

Christoph Molnar

Parallel Problem Solving from Nature – PPSN XVI

View PDFchevron_right

Analyzing the Impact of Adversarial Examples on Explainable Machine Learning

suvendu nayak

arXiv (Cornell University), 2023

View PDFchevron_right

Feature Attributions and Counterfactual Explanations Can Be Manipulated

Hima Lakkaraju

ArXiv, 2021

View PDFchevron_right

Explainable Artificial Intelligence in Machine Learning

Gabriel Banaggia

Capstone Project Report, 2024

View PDFchevron_right

The Uncertainty of Counterfactuals in Deep Learning

Doug Talbert

The International FLAIRS Conference Proceedings

View PDFchevron_right

Explainable Machine Learning with Prior Knowledge: An Overview

Sebastian Houben

ArXiv, 2021

View PDFchevron_right

Explainable Artificial Intelligence: How Subsets of the Training Data Affect a Prediction

Ingrid Glad

ArXiv, 2020

View PDFchevron_right

Conceptual challenges for interpretable machine learning

David Watson

Synthese, 2022

View PDFchevron_right

Finding Regions of Counterfactual Explanations via Robust Optimization

S. Ilker Birbil

arXiv (Cornell University), 2023

View PDFchevron_right

Interpretability and Explainability: A Machine Learning Zoo Mini-tour

Ričards Marcinkevičs

ArXiv, 2020

View PDFchevron_right

Declarative Approaches to Counterfactual Explanations for Classification

Leopoldo Bertossi

Theory and Practice of Logic Programming

View PDFchevron_right

Counterfactual building and evaluation via eXplainable Support Vector Data Description

Alberto Carlevaro

IEEE Access

View PDFchevron_right

Counterfactual Explanations as Interventions in Latent Space

Alessandro Castelnovo

2021

View PDFchevron_right

Individual Explanations in Machine Learning Models: A Survey for Practitioners

Alfredo Carrillo

ArXiv, 2021

View PDFchevron_right

Robust and Stable Black Box Explanations

Nino Arsov

2020

View PDFchevron_right

Foiling Explanations in Deep Neural Networks

Raz Lapid

Cornell University - arXiv, 2022

View PDFchevron_right