A new tree-ring-based summer temperature reconstruction over the last three centuries for east-central Europe (original) (raw)
Related papers
… and Planetary Change, 2010
Future climate change will likely influence the frequency and intensity of weather extremes. As such events are by definition rare, long records are required to understand their characteristics, drivers, and consequences on ecology and society. Herein we provide a unique perspective on regional-scale temperature extremes over the past millennium, using three tree-ring maximum latewood density (MXD) chronologies from higher elevations in the European Alps. We verify the tree-ring-based extremes using documentary evidences from Switzerland, the Czech Republic, and Central Europe that allowed the identification of 44 summer extremes over the 1550-2003 period. These events include cold temperatures in 1579, 1628, 1675, and 1816, as well as warm ones in 1811 and 2003. Prior to 1550, we provide new evidence for cold (e.g., 1068 and 1258) and warm (e.g., 1333) summers derived from the combined MXD records and thus help to characterize high-frequency temperature variability during medieval times. Spatial coherence of the reconstructed extremes is found over Switzerland, with most signatures even extending across Central Europe. We discuss potential limitations of the tree-ring and documentary archives, including the (i) ability of MXD to particularly capture extremely warm temperatures, (ii) methodological identification and relative definition of extremes, and (iii) placement of those events in the millennium-long context of low-frequency climate change.
Tree-Ring Amplification of the Early-19th Century Summer Cooling in Central Europe
Journal of Climate, 2015
Annually resolved and absolutely dated tree-ring chronologies are the most important proxy archives to reconstruct climate variability over centuries to millennia. However, the suitability of tree-ring chronologies to reflect the “true” spectral properties of past changes in temperature and hydroclimate has recently been debated. At issue is the accurate quantification of temperature differences between early nineteenth-century cooling and recent warming. In this regard, central Europe (CEU) offers the unique opportunity to compare evidence from instrumental measurements, paleomodel simulations, and proxy reconstructions covering both the exceptionally hot summer of 2003 and the year without summer in 1816. This study uses 565 Swiss stone pine (Pinus cembra) ring width samples from high-elevation sites in the Slovakian Tatra Mountains and Austrian Alps to reconstruct CEU summer temperatures over the past three centuries. This new temperature history is compared to different sets of ...
Journal of Quaternary Science, 2014
Tree-ring chronologies of maximum latewood density are most suitable to reconstruct annually resolved summer temperature variations of the late Holocene. The two longest such chronologies have been developed in northern Europe stretching back to the 2nd century BC, and the 5th century AD. We show where similarities between the two chronologies exist, and combine portions of both into a new summer temperature reconstruction for the Common Era. To minimize the transfer of potential biases, we assess the contribution of the candidate reconstructions' measurements, and exclude data (i) from exceptionally young and old trees, and (ii) produced by different laboratory technologies. Our new composite reconstruction reveals warmer conditions during Roman, Medieval and recent times, separated by prolonged cooling during the Migration period and Little Ice Age. Twentieth century warmth, as indicated in one of the existing density records, is reduced in the new reconstruction, also affecting the overall, millennial-scale, cooling trend over the late Holocene (À0.30˚C per 1000 years). Due to the reduced biological memory, typical for tree-ring density measurements, the new reconstruction is most suitable for evaluating the rate and speed of abrupt summer cooling following large volcanic eruptions.
Filling the Eastern European gap in millennium-long temperature reconstructions
Proceedings of the National Academy of Sciences, 2013
Tree ring-based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May-June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability. Increased plague outbreaks and political conflicts, as well as decreased settlement activities, coincided with temperature depressions. The Black Death in the mid-14th century, the Thirty Years War in the early 17th century, and the French Invasion of Russia in the early 19th century all occurred during the coldest episodes of the last millennium. A comparison with summer temperature reconstructions from Scandinavia, the Alps, and the Pyrenees emphasizes the seasonal and spatial specificity of our results, questioning those large-scale reconstructions that simply average individual sites. climate change | dendroclimatology | Eastern Europe | human history
Climatic Change, 2010
Monthly temperature series for Central Europe back to AD 1500 are developed from documentary index series from Germany, Switzerland and the Czech Republic (1500-1854) and 11 instrumental temperature records . Documentary evidence from the Low Countries, the Carpathian Basin and Poland are used for cross-checking for earlier centuries. The instrumental station records are corrected for inhomogeneities, including insufficient radiation protection of early thermometers and the urban heat island effect. For overlapping period (1760-1854), the documentary data series correlate with instrumental temperatures, most strongly in winter (86% explained variance in January) and least in autumn (56% in September). For annual average temperatures, 81% of the variance is explained. Verification statistics indicate high reconstruction skill for most months and seasons. The last 20 years (since 1988) stand out as very likely the warmest 20-year period, accounting for the calibration uncertainty and decreases in proxy data quality before the calibration period. The new reconstruction displays a previously unobserved P. Dobrovolný (B) · R. Brázdil · M. Halíčková · J. Macková Climatic Change long-term decrease in DJF, MAM and JJA temperature variability over last five centuries. Compiled monthly, seasonal and annual series can be used to improve the robustness of gridded large-scale European temperature reconstructions and possible impact studies. Further improvement of the reconstruction would be achieved if documentary data from other European countries are further developed.
Climatic Change, 2010
Monthly temperature series for Central Europe back to AD 1500 are developed from documentary index series from Germany, Switzerland and the Czech Republic (1500-1854) and 11 instrumental temperature records . Documentary evidence from the Low Countries, the Carpathian Basin and Poland are used for cross-checking for earlier centuries. The instrumental station records are corrected for inhomogeneities, including insufficient radiation protection of early thermometers and the urban heat island effect. For overlapping period (1760-1854), the documentary data series correlate with instrumental temperatures, most strongly in winter (86% explained variance in January) and least in autumn (56% in September). For annual average temperatures, 81% of the variance is explained. Verification statistics indicate high reconstruction skill for most months and seasons. The last 20 years (since 1988) stand out as very likely the warmest 20-year period, accounting for the calibration uncertainty and decreases in proxy data quality before the calibration period. The new reconstruction displays a previously unobserved P. Dobrovolný (B) · R. Brázdil · M. Halíčková · J. Macková Climatic Change long-term decrease in DJF, MAM and JJA temperature variability over last five centuries. Compiled monthly, seasonal and annual series can be used to improve the robustness of gridded large-scale European temperature reconstructions and possible impact studies. Further improvement of the reconstruction would be achieved if documentary data from other European countries are further developed.
Millennium-long summer temperature variations in the European Alps as reconstructed from tree rings
Climate of the Past, 2010
This paper presents a reconstruction of the summer temperatures over the Greater Alpine Region (44.05 • -47.41 • N, 6.43 • -13 • E) during the last millennium based on a network of 38 multi-centennial larch and stone pine chronologies. Tree ring series are standardized using an Adaptative Regional Growth Curve, which attempts to remove the age effect from the low frequency variations in the series. The proxies are calibrated using the June to August mean temperatures from the HISTALP high-elevation temperature time series spanning the 1818-2003. The method combines an analogue technique, which is able to extend the too short tree-ring series, an artificial neural network technique for an optimal non-linear calibration including a bootstrap technique for calculating error assessment on the reconstruction.
An 810-year history of cold season temperature variability for northern Poland
Boreas, 2017
Scots pine (Pinus sylvestris L.) is a widely used tree species in European dendroclimatology studies due to its common distribution across much of the continent. Almost all studies find radial growth strongly related to summer temperature, a result reflecting site selection at high elevation/latitude environments where trees grow at their ecophysiological limits. Due to the amount of attention spent on these sites there is a geographical and seasonal bias in temperature reconstructions based upon tree-ring proxies in Europe. To overcome the limited availability of tree-ring data in temperate lowlands, we present a northern Poland ring-width chronology developed from living and historic Scots pine material with a strong common growth signal going back to AD 1200. Investigations into climate-growth relationships found year-to-year ring-width variability to be more strongly correlated to cold season temperature (November to April) prior to the growing season than summer temperatures during tree-ring formation. Based on this relationship it was possible to reconstruct cold season temperature conditions for the last 810 years. Spatial field correlations with gridded instrumental records indicated that the reconstruction provides relevant cold season temperature information across the land regions bordering the North Atlantic Ocean and Baltic Sea, lowlands and uplands of western and central Europe, and the eastern and central interior of Russia. Despite an unsuccessful attempt to find a stationary relationship with the North Atlantic Oscillation, comparisons with several cold season temperature reconstructions confirmed the long-term connection between our reconstructed temperature series for northern Poland and the wider area.
Extreme temperature events in millennial length tree-ring chronologies from the Alps
2009
Future climate change will likely influence the frequency and intensity of weather extremes. As such events are by definition rare, long records are required to understand their characteristics, drivers, and consequences on ecology and society. Herein we provide a unique perspective on regional-scale temperature extremes over the past millennium, using three tree-ring maximum latewood density (MXD) chronologies from higher elevations in the European Alps. We verify the tree-ring-based extremes using documentary evidences from Switzerland, the Czech Republic, and Central Europe that allowed the identification of 44 summer extremes over the 1550-2003 period. These events include cold temperatures in 1579, 1628, 1675, and 1816, as well as warm ones in 1811 and 2003. Prior to 1550, we provide new evidence for cold (e.g., 1068 and 1258) and warm (e.g., 1333) summers derived from the combined MXD records and thus help to characterize high-frequency temperature variability during medieval times. Spatial coherence of the reconstructed extremes is found over Switzerland, with most signatures even extending across Central Europe. We discuss potential limitations of the tree-ring and documentary archives, including the (i) ability of MXD to particularly capture extremely warm temperatures, (ii) methodological identification and relative definition of extremes, and (iii) placement of those events in the millennium-long context of low-frequency climate change.