Allosteric inhibitors of Akt1 and Akt2: Discovery of [1,2,4]triazolo[3,4-f][1,6]naphthyridines with potent and balanced activity (original) (raw)
Related papers
Bioorganic & Medicinal Chemistry Letters, 2008
A series of naphthyridine and naphthyridinone allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been optimized to have potent dual activity against the activated kinase as well as the activation of Akt in cells. One molecule in particular, compound 17, has potent inhibitory activity against Akt1 and 2 in vivo in a mouse lung and efficacy in a tumor xenograft model.
Scientific Reports
The serine/threonine protein kinase AKT plays a pivotal role within the PI3K pathway in regulating cellular proliferation and apoptotic cellular functions, and AKT hyper-activation via gene amplification and/or mutation has been implicated in multiple human malignancies. There are 3 AKT isoenzymes (AKT1-3) which mediate critical, non-redundant functions. We present the discovery and development of ALM301, a novel, allosteric, sub-type selective inhibitor of AKT1/2. ALM301 binds in an allosteric pocket created by the combined movement of the PH domain and the catalytic domain, resulting in a DFG out conformation. ALM301 was shown to be highly selective against a panel of over 450 kinases and potently inhibited cellular proliferation. These effects were particularly pronounced in MCF-7 cells containing a PI3KCA mutation. Subsequent cellular downstream pathway analysis in this sensitive cell line revealed potent inhibition of pAKT signalling up to 48 h post dosing. ALM301 treatment was...
Discovery of potent and cell-active allosteric dual Akt 1 and 2 inhibitors
Bioorganic & Medicinal Chemistry Letters, 2008
This paper describes the improvement of cell potency in a class of allosteric Akt 1 and 2 inhibitors. Key discoveries include identifying the solvent exposed region of the molecule and appending basic amines to enhance the physiochemical properties of the molecules. Findings from the structure-activity relationships are discussed.
AKT crystal structure and AKT-specific inhibitors
Oncogene, 2005
AKT kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. This review summarizes studies that support the rationale for targeting AKT kinases in new drug discovery efforts. Structural features of AKT kinase in its inactive and active states, as determined by crystal structure analysis, are described. Recent efforts in the development and biological evaluation of small molecule inhibitors of AKT, and the challenges remaining are summarized. Inhibitors targeting the ATP binding site, PH domain and protein substrate binding site, as well as isoform selective allosteric inhibitors are reviewed. Structure-based design using PKA mutants as surrogates and computer modeling in the discovery of selective inhibitors is discussed. The issues and challenges facing the development of different classes of inhibitors as therapeutics are also discussed.
British Journal of Cancer
BACKGROUND: AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants. METHODS: We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity. RESULTS: Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations. CONCLUSIONS: These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options.
Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity
Cancer Research, 2008
Akt kinases 1, 2, and 3 are important regulators of cell survival and have been shown to be constitutively active in a variety of human tumors. GSK690693 is a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. It causes dose-dependent reductions in the phosphorylation state of multiple proteins downstream of Akt, including GSK3B, PRAS40, and Forkhead. GSK690693 inhibited proliferation and induced apoptosis in a subset of tumor cells with potency consistent with intracellular inhibition of Akt kinase activity. In immune-compromised mice implanted with human BT474 breast carcinoma xenografts, a single i.p. administration of GSK690693 inhibited GSK3B phosphorylation in a dose-and time-dependent manner. After a single dose of GSK690693, >3 Mmol/L drug concentration in BT474 tumor xenografts correlated with a sustained decrease in GSK3B phosphorylation. Consistent with the role of Akt in insulin signaling, treatment with GSK690693 resulted in acute and transient increases in blood glucose level. Daily administration of GSK690693 produced significant antitumor activity in mice bearing established human SKOV-3 ovarian, LNCaP prostate, and BT474 and HCC-1954 breast carcinoma xenografts. Immunohistochemical analysis of tumor xenografts after repeat dosing with GSK690693 showed reductions in phosphorylated Akt substrates in vivo. These results support further evaluation of GSK690693 as an anticancer agent.