Domain Generalization by Marginal Transfer Learning (original) (raw)
Related papers
Generalizing to Unseen Domains: A Survey on Domain Generalization
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021
Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
A survey on domain adaptation theory
arXiv (Cornell University), 2020
All famous machine learning algorithms that comprise both supervised and semi-supervised learning work well only under a common assumption: the training and test data follow the same distribution. When the distribution changes, most statistical models must be reconstructed from newly collected data, which for some applications can be costly or impossible to obtain. Therefore, it has become necessary to develop approaches that reduce the need and the effort to obtain new labeled samples by exploiting data that are available in related areas, and using these further across similar fields. This has given rise to a new machine learning framework known as transfer learning: a learning setting inspired by the capability of a human being to extrapolate knowledge across tasks to learn more efficiently. Despite a large amount of different transfer learning scenarios, the main objective of this survey is to provide an overview of the state-of-the-art theoretical results in a specific, and arguably the most popular, sub-field of transfer learning, called domain adaptation. In this sub-field, the data distribution is assumed to change across the training and the test data, while the learning task remains the same. We provide a first up-to-date description of existing results related to domain adaptation problem that cover learning bounds based on different statistical learning frameworks.
The supervised learning paradigm assumes in general that both training and test data are sampled from the same distribution. When this assumption is violated, we are in the setting of transfer learning or domain adaptation: Here, training data from a source domain, aim to learn a classi er which performs well on a target domain governed by a di efrent distribution. We pursue an agnostic approach, assuming no information about the shift between source and target distributions but relying exclusively on unlabeled data from the target domain. Previous works [2] suggest that feature representations, which are invariant to domain change, increases generalization. Extending these ideas, we prove a generalization bound for domain adaptation that identi es the transfer mechanism: what matters is how much learnt classier itself is invariant, while feature representations may vary. Our bound is much tighter for rich hypothesis classes, which may only contain invariant classi er, but can not be invariant altogether. This concept is exempli ed by the computer vision tasks of semantic segmentation and image categorization. Domain shift is simulated by introducing some common imaging distortions, such as gamma transform and color temperature shift. Our experiments on a public benchmark dataset con rm that using domain adapted classi er signi cantly improves accuracy when distribution changes are present.
A survey on domain adaptation theory: learning bounds and theoretical guarantees
arXiv (Cornell University), 2020
All famous machine learning algorithms that comprise both supervised and semi-supervised learning work well only under a common assumption: the training and test data follow the same distribution. When the distribution changes, most statistical models must be reconstructed from new collected data, which for some applications can be costly or impossible to obtain. Therefore, it has become necessary to develop approaches that reduce the need and the effort to obtain new labeled samples by exploiting data that are available in related areas, and using these further across similar fields. This has given rise to a new machine learning framework known as transfer learning: a learning setting inspired by the capability of a human being to extrapolate knowledge across tasks to learn more efficiently. Despite a large amount of different transfer learning scenarios, the main objective of this survey is to provide an overview of the state-of-the-art theoretical results in a specific, and arguably the most popular, sub-field of transfer learning, called domain adaptation. In this sub-field, the data distribution is assumed to change across the training and the test data, while the learning task remains the same. We provide a first up-to-date description of existing results related to domain adaptation problem that cover learning bounds based on different statistical learning frameworks. Keywords Transfer learning • Domain adaptation • Learning theory This survey is a shortened version of the recently published book "Advances in Domain Adaptation Theory" [Redko et al., 2019c] written by the authors of this survey. Its purpose is to provide a high-level overview of the book and to update it with some recent references. All of the proofs and most of the mathematical developments are omitted in this version, to keep the document to a reasonable length.
Transfer learning: a friendly introduction
Journal of Big Data
Infinite numbers of real-world applications use Machine Learning (ML) techniques to develop potentially the best data available for the users. Transfer learning (TL), one of the categories under ML, has received much attention from the research communities in the past few years. Traditional ML algorithms perform under the assumption that a model uses limited data distribution to train and test samples. These conventional methods predict target tasks undemanding and are applied to small data distribution. However, this issue conceivably is resolved using TL. TL is acknowledged for its connectivity among the additional testing and training samples resulting in faster output with efficient results. This paper contributes to the domain and scope of TL, citing situational use based on their periods and a few of its applications. The paper provides an in-depth focus on the techniques; Inductive TL, Transductive TL, Unsupervised TL, which consists of sample selection, and domain adaptation...
IEEE Transactions on Services Computing
Transfer learning aims to learn classifiers for a target domain by transferring knowledge from a source domain. However, due to two main issues: feature discrepancy and distribution divergence, transfer learning can be a very difficult problem in practice. In this paper, we present a framework called TLF that builds a classifier for the target domain having only few labeled training records by transferring knowledge from the source domain having many labeled records. While existing methods often focus on one issue and leave the other one for the further work, TLF is capable of handling both issues simultaneously. In TLF, we alleviate feature discrepancy by identifying shared label distributions that act as the pivots to bridge the domains. We handle distribution divergence by simultaneously optimizing the structural risk functional, joint distributions between domains, and the manifold consistency underlying marginal distributions. Moreover, for the manifold consistency we exploit its intrinsic properties by identifying k nearest neighbors of a record, where the value of k is determined automatically in TLF. Furthermore, since negative transfer is not desired, we consider only the source records that are belonging to the source pivots during the knowledge transfer. We evaluate TLF on seven publicly available natural datasets and compare the performance of TLF against the performance of eleven state-of-the-art techniques. We also evaluate the effectiveness of TLF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques.
2020
Transfer learning involves taking information and insight from one problem domain and applying it to a new problem domain. Although widely used in practice, theory for transfer learning remains less well-developed. To address this, we prove several novel results related to transfer learning, showing the need to carefully select which sets of information to transfer and the need for dependence between transferred information and target problems. Furthermore, we prove how the degree of probabilistic change in an algorithm using transfer learning places an upper bound on the amount of improvement possible. These results build on the algorithmic search framework for machine learning, allowing the results to apply to a wide range of learning problems using transfer.
Towards Data-Free Domain Generalization
ArXiv, 2021
In this work, we investigate the unexplored intersection of domain generalization and data-free learning. In particular, we address the question: How can knowledge contained in models trained on different source data domains can be merged into a single model that generalizes well to unseen target domains, in the absence of source and target domain data? Machine learning models that can cope with domain shift are essential for for real-world scenarios with often changing data distributions. Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data. We define the novel problem of Data-Free Domain Generalization (DFDG), a practical setting where models trained on the source domains separately are available instead of the original datasets, and investigate how to effectively solve the domain generalization problem in that case. We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from ...
Adaptation Regularization: A General Framework for Transfer Learning
IEEE Transactions on Knowledge and Data Engineering, 2014
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper, we propose a novel transfer learning framework, referred to as Adaptation Regularization based Transfer Learning (ARTL), to model them in a unified way based on the structural risk minimization principle and the regularization theory. Specifically, ARTL learns the adaptive classifier by simultaneously optimizing the structural risk functional, the joint distribution matching between domains, and the manifold consistency underlying marginal distribution. Based on the framework, we propose two novel methods using Regularized Least Squares (RLS) and Support Vector Machines (SVMs), respectively, and use the Representer theorem in reproducing kernel Hilbert space to derive corresponding solutions. Comprehensive experiments verify that ARTL can significantly outperform state-of-the-art learning methods on several public text and image datasets.