MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging (original) (raw)

Abstract

ABSTRACTPurposeDiffusion weighted imaging (DWI) allows investigators to identify structural, microstructural, and connectivitybased differences between subjects, but variability due to session and scanner biases is a challenge.MethodsTo investigate DWI variability, we present MASiVar, a multisite dataset consisting of 319 diffusion scans acquired at 3T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified dataset. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white matter bundle segmentation, and (4) structural connectomics. Respectively, we evaluate region-wise fractional anisotropy (FA), mean...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (79)

  1. O'Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg. Clin. N. Am. 2011;22:185-196 doi: 10.1016/j.nec.2010.12.004.
  2. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008;34:51-61 doi: 10.1007/s12031-007-0029-0.
  3. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994;66:259- 267 doi: 10.1016/S0006-3495(94)80775-1.
  4. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000-1016 doi: 10.1016/j.neuroimage.2012.03.072.
  5. Stanisz GJ, Szafer A, Wright GA, Henkelman RM. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 1997;37:103-111 doi: 10.1002/mrm.1910370115.
  6. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage 2012;59:2241-2254 doi: 10.1016/j.neuroimage.2011.09.081.
  7. Schilling KG, Petit L, Rheault F, et al. Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct. Funct. 2020;225:2387-2402 doi: 10.1007/s00429-020-02129-z.
  8. Sotiropoulos SN, Zalesky A. Building connectomes using diffusion MRI: why, how and but. NMR Biomed. 2019;32:1-23 doi: 10.1002/nbm.3752.
  9. Di Martino A, O'Connor D, Chen B, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 2017;4:170010 doi: 10.1038/sdata.2017.10.
  10. Travers BG, Adluru N, Ennis C, et al. Diffusion Tensor Imaging in Autism Spectrum Disorder: A Review. Autism Res. 2012;5:289-313 doi: 10.1002/aur.1243.
  11. Repple J, Karliczek G, Meinert S, et al. Variation of HbA1c affects cognition and white matter microstructure in healthy, young adults. Mol. Psychiatry 2019:1-10 doi: 10.1038/s41380-019-0504-3.
  12. Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes 2008;57:3083-3089 doi: 10.2337/db08-0724.
  13. De Santis S, Bastiani M, Droby A, et al. Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience 2019;403:17- 26 doi: 10.1016/j.neuroscience.2018.03.048.
  14. Cetin-Karayumak S, Di Biase MA, Chunga N, et al. White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. Mol. Psychiatry 2019 doi: 10.1038/s41380-019- 0509-y.
  15. Westlye LT, Walhovd KB, Dale AM, et al. Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 2010;20:2055-2068 doi: 10.1093/cercor/bhp280.
  16. Menzler K, Belke M, Wehrmann E, et al. Men and women are different: Diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 2011;54:2557-2562 doi: 10.1016/j.neuroimage.2010.11.029.
  17. Froeling M, Tax CMW, Vos SB, Luijten PR, Leemans A. "MASSIVE" brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation. Magn. Reson. Med. 2017;77:1797-1809 doi: 10.1002/mrm.26259.
  18. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn Human Connectome Project: An overview. Neuroimage 2013;80:62-79 doi: 10.1016/j.neuroimage.2013.05.041.
  19. Koller K, Rudrapatna SU, Chamberland M, et al. MICRA: Microstructural Image Compilation with Repeated Acquisitions. Neuroimage 2020;225:117406 doi: 10.1016/j.neuroimage.2020.117406.
  20. Duchesne S, Chouinard I, Potvin O, et al. The Canadian Dementia Imaging Protocol: Harmonizing National Cohorts. J. Magn. Reson. Imaging 2019;49:456-465 doi: 10.1002/jmri.26197.
  21. Tong Q, He H, Gong T, et al. Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci. Data 2020;7 doi: 10.1038/s41597-020-0493-8.
  22. Farrell JAD, Landman BA, Jones CK, et al. Effects of SNR on the Accuracy and Reproducibility of DTI- derived Fractional Anisotropy, Mean Diffusivity, and Principal Eigenvector Measurements at 1.5T. J. Magn. Reson. 2010;26:756-767 doi: 10.1002/jmri.21053.Effects.
  23. Magnotta VA, Matsui JT, Liu D, et al. Multicenter Reliability of Diffusion Tensor Imaging. Brain Connect. 2012;2:345-355 doi: 10.1089/brain.2012.0112.
  24. Vollmar C, O'Muircheartaigh J, Barker GJ, et al. Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage 2010;51:1384-1394 doi: 10.1016/j.neuroimage.2010.03.046.
  25. Palacios EM, Martin AJ, Boss MA, et al. Towards Precision and Reproducibility of DTI. AJNR Am J Neuroradiol. 2017;38:537-545 doi: 10.3174/ajnr.A5025.Towards.
  26. Andica C, Kamagata K, Hayashi T, et al. Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics. Neuroradiology 2020;62:483-494 doi: 10.1007/s00234-019-02350-6.
  27. Tariq M, Schneider T, Alexander DC, Wheeler-Kingshott CA, Zhang H. Assessing scan-rescan reproducibility of the parameter estimates from NODDI. Proc. Intl. Soc. Mag. Reson. Med. 21 2013;21:3187.
  28. Nath V, Schilling KG, Parvathaneni P, et al. Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge. J. Magn. Reson. Imaging 2020;51:234-249 doi: 10.1002/jmri.26794.
  29. Besseling RMH, Jansen JFA, Overvliet GM, et al. Tract specific reproducibility of tractography based morphology and diffusion metrics. PLoS One 2012;7 doi: 10.1371/journal.pone.0034125.
  30. Cousineau M, Jodoin PM, Morency FC, et al. A test-retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles. NeuroImage Clin. 2017;16:222-233 doi: 10.1016/j.nicl.2017.07.020.
  31. Boukadi M, Marcotte K, Bedetti C, et al. Test-retest reliability of diffusion measures extracted along white matter language fiber bundles using Hardi-based tractography. Front. Neurosci. 2019;13 doi: 10.3389/fnins.2018.01055.
  32. Schilling KG, Rheault F, Petit L, Hansen CB, Nath V, Yeh F. Tractography dissection variability : what happens when 42 groups dissect 14 white matter bundles on the same dataset ? bioRxiv 2020.
  33. Prčkovska V, Rodrigues P, Puigdellivol Sanchez A, et al. Reproducibility of the Structural Connectome Reconstruction across Diffusion Methods. J. Neuroimaging 2016;26:46-57 doi: 10.1111/jon.12298.
  34. Girard G, Whittingstall K, Deriche R, Descoteaux M. Studying white matter tractography reproducibility through connectivity matrices. Int. Symp. Magn. Reson. Med. 2015.
  35. Roine T, Jeurissen B, Perrone D, et al. Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks. Med. Image Anal. 2019;52:56-67 doi: 10.1016/j.media.2018.10.009.
  36. Schilling KG, Blaber J, Hansen C, et al. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS One 2020;15:e0236418.
  37. Cai LY, Yang Q, Hansen CB, et al. PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images. Magn. Reson. Med. 2021:1-15 doi: 10.1002/mrm.28678.
  38. Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394-406 doi: 10.1016/j.neuroimage.2016.08.016.
  39. Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 2016;76:1582-1593 doi: 10.1002/mrm.26059.
  40. Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal J V. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage 2019;200:391-404 doi: 10.1016/j.neuroimage.2019.06.039.
  41. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage 2003;20:870-888 doi: 10.1016/S1053- 8119(03)00336-7.
  42. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063-1078 doi: 10.1016/j.neuroimage.2015.10.019.
  43. Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 2016;141:556-572 doi: 10.1016/j.neuroimage.2016.06.058.
  44. Garyfallidis E, Côté MA, Rheault F, et al. Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 2018;170:283-295 doi: 10.1016/j.neuroimage.2017.07.015.
  45. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010;52:1059-1069 doi: 10.1016/j.neuroimage.2009.10.003.
  46. Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. Neuroimage 2013;81:335-346 doi: 10.1016/j.neuroimage.2013.05.028.
  47. Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical Diffusion Measures for MRI from Tensor Basis Analysis. Proc. 5th Annu. Meet. ISMRM 1997:1742.
  48. Tustison NJ, Cook PA, Klein A, et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 2014;99:166-179 doi: 10.1016/j.neuroimage.2014.05.044.
  49. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross- correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008;12:26-41 doi: 10.1016/j.media.2007.06.004.
  50. Mori S, Wakana S, Van Zijl PCM, Nagae-Poetscher LM. MRI atlas of human white matter. Elsevier; 2005.
  51. Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007;36:630-644 doi: 10.1016/j.neuroimage.2007.02.049.
  52. Hua K, Zhang J, Wakana S, et al. Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. Neuroimage 2008;39:336-347 doi: 10.1016/j.neuroimage.2007.07.053.
  53. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986;1:54-75 doi: 10.1214/ss/1177013815.
  54. Garyfallidis E, Brett M, Amirbekian B, et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014;8:1-17 doi: 10.3389/fninf.2014.00008.
  55. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. Neuroimage 2007;35:1459-1472 doi: 10.1016/j.neuroimage.2007.02.016.
  56. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297-302.
  57. Tournier J-D, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. 2019 doi: 10.1016/j.neuroimage.2019.116137.
  58. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 2013;67:298-312 doi: 10.1016/j.neuroimage.2012.11.049.
  59. Makris N, Goldstein JM, Kennedy D, et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 2006;83:155-171 doi: 10.1016/j.schres.2005.11.020.
  60. Frazier JA, Chiu S, Breeze JL, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 2005;162:1256-1265 doi: 10.1176/appi.ajp.162.7.1256.
  61. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980 doi: 10.1016/j.neuroimage.2006.01.021.
  62. Goldstein JM, Seidman LJ, Makris N, et al. Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability. Biol. Psychiatry 2007;61:935-945 doi: 10.1016/j.biopsych.2006.06.027.
  63. Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods. John Wiley & Sons; 2013.
  64. Hernandez-Fernandez M, Reguly I, Jbabdi S, Giles M, Smith S, Sotiropoulos SN. Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. Neuroimage 2019;188:598-615 doi: 10.1016/j.neuroimage.2018.12.015.
  65. Chang LC, Jones DK, Pierpaoli C. RESTORE: Robust estimation of tensors by outlier rejection. Magn. Reson. Med. 2005;53:1088-1095 doi: 10.1002/mrm.20426.
  66. Cook P a, Bai Y, Seunarine KK, Hall MG, Parker GJ, Alexander DC. Camino: Open-Source Diffusion-MRI Reconstruction and Processing. 14th Sci. Meet. Int. Soc. Magn. Reson. Med. 2006;14:2759.
  67. Hansen CB, Yang Q, Lyu I, et al. Pandora: 4-D white matter bundle population-based atlases derived from diffusion MRI fiber tractography. bioRxiv 2020:2020.06.12.148999 doi: 10.1101/2020.06.12.148999.
  68. Volz LJ, Cieslak M, Grafton ST. A probabilistic atlas of fiber crossings for variability reduction of anisotropy measures. Brain Struct. Funct. 2018;223:635-651 doi: 10.1007/s00429-017-1508-x.
  69. Figley TD, Mortazavi Moghadam B, Bhullar N, Kornelsen J, Courtney SM, Figley CR. Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, visual and visuospatial networks. Front. Hum. Neurosci. 2017;11:1-12 doi: 10.3389/fnhum.2017.00306.
  70. Warrington S, Bryant KL, Khrapitchev AA, et al. XTRACT -Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 2020;217:1-15 doi: 10.1016/j.neuroimage.2020.116923.
  71. Yeh FC. Shape analysis of the human association pathways. Neuroimage 2020;223 doi: 10.1016/j.neuroimage.2020.117329.
  72. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WYI. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 2013;8:1-16 doi: 10.1371/journal.pone.0080713.
  73. Yendiki A, Panneck P, Srinivasan P, et al. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinform. 2011;5:1-12 doi: 10.3389/fninf.2011.00023.
  74. Rheault F, De Benedictis A, Daducci A, et al. Tractostorm: The what, why, and how of tractography dissection reproducibility. Hum. Brain Mapp. 2020;41:1859-1874 doi: 10.1002/hbm.24917.
  75. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:1479-1493 doi: 10.1371/journal.pbio.0060159.
  76. Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 2005;1:0245-0251 doi: 10.1371/journal.pcbi.0010042.
  77. Casey BJ, Cannonier T, Conley MI, et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018;32:43-54 doi: 10.1016/j.dcn.2018.03.001.
  78. Somerville LH, Bookheimer SY, Buckner RL, et al. The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds. Neuroimage 2018;183:456-468 doi: 10.1016/j.neuroimage.2018.08.050.
  79. Gorgolewski KJ, Auer T, Calhoun VD, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 2016;3:160044 doi: 10.1038/sdata.2016.44.