An open-source implementation of estimation and correction of head-motion and eddy-current distortions generalizable across diffusion MRI signal models (original) (raw)
Related papers
Magnetic Resonance in Medicine
Purpose: To propose a methodology for assessment of algorithms that correct distortions due to motion, eddy-currents, and echo planar imaging in diffusion weighted images (DWIs). Methods: The proposed method evaluates correction performance by measuring variability across datasets of the same object acquired with images having distortions in different directions, thereby overcoming the unavailability of ground-truth, undistorted DWIs. A comprehensive diffusion MRI dataset, collected using a suitable experimental design, is made available to the scientific community, consisting of three DWI shells (Bmax = 5000 s/mm 2), 30 gradient directions, a replicate set of antipodal gradient directions, four phase-encoding directions, and three different head orientations. The proposed methodology was tested using the TORTOISE diffusion MRI processing pipeline. Results: The median variability of the original distorted data was 123% higher for DWIs, 100-168% higher for tensor-derived metrics and 28-111% higher for MAPMRI metrics, than in the corrected versions. EPI distortions induced substantial variability, nearly comparable to the contribution of eddy-current distortions. Conclusions: The dataset and the evaluation strategy proposed herein enable quantitative comparison of different methods for correction of distortions due to motion, eddy-currents, and other EPI distortions, and can be useful in benchmarking newly developed algorithms. K E Y W O R D S diffusion MRI, distortion correction, eddy-currents, EPI 1 | INTRODUCTION In the past couple of decades, Diffusion Tensor Imaging (DTI) 1 and high angular resolution diffusion imaging (HARDI) 2-7 have been extensively used to investigate the architectural, microstructural and compositional features of the human brain. 8 It is well known that obtaining reproducible and accurate diffusion MRI results is challenging given that
NeuroImage, 2015
In this paper we describe a method for retrospective estimation and correction of eddy current (EC)-induced distortions and subject movement in diffusion imaging. In addition a susceptibility-induced field can be supplied and will be incorporated into the calculations in a way that accurately reflects that the two fields (susceptibility- and EC-induced) behave differently in the presence of subject movement. The method is based on registering the individual volumes to a model free prediction of what each volume should look like, thereby enabling its use on high b-value data where the contrast is vastly different in different volumes. In addition we show that the linear EC-model commonly used is insufficient for the data used in the present paper (high spatial and angular resolution data acquired with Stejskal-Tanner gradients on a 3T Siemens Verio, a 3T Siemens Connectome Skyra or a 7T Siemens Magnetome scanner) and that a higher order model performs significantly better. The method...
Characterization and correction of timeâvarying eddy currents for diffusion MRI
Magnetic Resonance in Medicine, 2021
Purpose: Diffusion MRI (dMRI) suffers from eddy currents induced by strong diffusion gradients, which introduce artefacts that can impair subsequent diffusion metric analysis. Existing retrospective correction techniques that correct for diffusion gradient induced eddy currents do not account for eddy current decay, which is generally effective for traditional Pulsed Gradient Spin Echo (PGSE) diffusion encoding. However, these techniques do not necessarily apply to advanced forms of dMRI that require substantial gradient slewing, such as Oscillating Gradient Spin Echo (OGSE). Methods: An in-house algorithm (TVEDDY), that for the first time retrospectively models eddy current decay, was tested on PGSE and OGSE brain images acquired at 7T. Correction performance was compared to conventional correction methods by evaluating the mean-squared error (MSE) between diffusion weighted images acquired with opposite polarity diffusion gradients. As a ground truth comparison, images were corrected using field dynamics up to third order in space measured using a field monitoring system. Results: Time-varying eddy currents were observed for OGSE, which introduced blurring that was not reduced using the traditional approach but was diminished considerably with TVEDDY and model-based reconstruction. No MSE difference was observed between the conventional approach and TVEDDY for PGSE, but for OGSE TVEDDY resulted in significantly lower MSE than the conventional approach. The field-monitoring-informed model-based reconstruction had the lowest MSE for both PGSE and OGSE. Conclusion: This work establishes that it is possible to estimate time-varying eddy currents from the diffusion data itself, which provides substantial image quality improvements for gradientintensive dMRI acquisitions like OGSE.
Dipy, a library for the analysis of diffusion MRI data
Frontiers in Neuroinformatics, 2014
Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.
Comprehensive framework for accurate diffusion MRI parameter estimation
Magnetic Resonance in Medicine, 2013
During the last decade, many approaches have been proposed for improving the estimation of diffusion measures. These techniques have already shown an increase in accuracy based on theoretical considerations, such as incorporating prior knowledge of the data distribution. The increased accuracy of diffusion metric estimators is typically observed in well-defined simulations, where the assumptions regarding properties of the data distribution are known to be valid. In practice, however, correcting for subject motion and geometric eddy current deformations alters the data distribution tremendously such that it can no longer be expressed in a closed form. The image processing steps that precede the model fitting will render several assumptions on the data distribution invalid, potentially nullifying the benefit of applying more advanced diffusion estimators. In this work, we present a generic diffusion model fitting framework that considers some statistics of diffusion MRI data. A central role in the framework is played by the conditional least squares estimator. We demonstrate that the accuracy of that particular estimator can generally be preserved, regardless the applied preprocessing steps, if the noise parameter is known a priori. To fulfill that condition, we also propose an approach for the estimation of spatially varying noise levels. Magn Reson Med 70:972-984, 2013.
Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI
Magnetic Resonance in Medicine, 2004
Patient motion and image distortion induced by eddy currents cause artifacts in maps of diffusion parameters computed from diffusion-weighted (DW) images. A novel and comprehensive approach to correct for spatial misalignment of DW imaging (DWI) volumes acquired with different strengths and orientations of the diffusion sensitizing gradients is presented. This approach uses a mutual information-based registration technique and a spatial transformation model containing parameters that correct for eddy current-induced image distortion and rigid body motion in three dimensions. All parameters are optimized simultaneously for an accurate and fast solution to the registration problem. The images can also be registered to a normalized template with a single interpolation step without additional computational cost. Following registration, the signal amplitude of each DWI volume is corrected to account for size variations of the object produced by the distortion correction, and the b-matrices are properly recalculated to account for any rotation applied during registration. Both qualitative and quantitative results show that this approach produces a significant improvement of diffusion tensor imaging (DTI) data acquired in the human brain.
Characterization of and correction for eddy current artifacts in echo planar diffusion imaging
Magnetic Resonance in Medicine, 1998
Magnetic resonance diffusion imaging is potentially an important tool for the noninvasive characterization of normal and pathological tissue. The technique, however, is prone to a number of artifacts that can severely affect its ability to provide clinically useful information. In this study, the problem of eddy current-induced geometric distortions that occur in diffusion images acquired with echo planar sequences was addressed. These geometric distortions produce artifacts in computed maps of diffusion parameters and are caused by misalignments in the individual diffusion-weighted images that comprise the diffusion data set. A new approach is presented to characterize and calibrate the eddy current effects, enabling the eddy current distortions to be corrected in sets of interleaved (or snapshot) echo planar diffusion images. Correction is achieved by acquiring one-dimensional field maps in the read and phase encode direction for each slice and each diffusion step. The method is then demonstrated through the correction of distortions in diffusion images of the human brain. It is shown that by using the eddy current correction scheme outlined, the eddy current-induced artifacts in the diffusion-weighted images are almost completely eliminated. In addition, there is a significant improvement in the quality of the resulting diffusion tensor maps.
QSIPrep: An integrative platform for preprocessing and reconstructing diffusion MRI
2020
ABSTRACTDiffusion-weighted magnetic resonance imaging (dMRI) has become the primary method for non-invasively studying the organization of white matter in the human brain. While many dMRI acquisition sequences have been developed, they all sample q-space in order to characterize water diffusion. Numerous software platforms have been developed for processing dMRI data, but most work on only a subset of sampling schemes or implement only parts of the processing workflow. Reproducible research and comparisons across dMRI methods are hindered by incompatible software, diverse file formats, and inconsistent naming conventions. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing upon a diverse set of software suites to capitalize upon their complementary strengths, QSIPrep automatically applies best practices for dMRI preprocessing, including denoising, distortion correction, h...
Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
Magnetic Resonance in Medicine, 2003
Image distortion due to field gradient eddy currents can create image artifacts in diffusion-weighted MR images. These images, acquired by measuring the attenuation of NMR signal due to directionally dependent diffusion, have recently been shown to be useful in the diagnosis and assessment of acute stroke and in mapping of tissue structure. This work presents an improvement on the spin-echo (SE) diffusion sequence that displays less distortion and consequently improves image quality. Adding a second refocusing pulse provides better image quality with less distortion at no cost in scanning efficiency or effectiveness, and allows more flexible diffusion gradient timing. By adjusting the timing of the diffusion gradients, eddy currents with a single exponential decay constant can be nulled, and eddy currents with similar decay constants can be greatly reduced. This new sequence is demonstrated in phantom measurements and in diffusion anisotropy images of normal human brain.
Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI
Medical image analysis, 2014
Ensuring one is using the correct gradient orientations in a diffusion MRI study can be a challenging task. As different scanners, file formats and processing tools use different coordinate frame conventions, in practice, users can end up with improperly oriented gradient orientations. Using such wrongly oriented gradient orientations for subsequent diffusion parameter estimation will invalidate all rotationally variant parameters and fiber tractography results. While large misalignments can be detected by visual inspection, small rotations of the gradient table (e.g. due to angulation of the acquisition plane), are much more difficult to detect. In this work, we propose an automated method to align the coordinate frame of the gradient orientations with that of the corresponding diffusion weighted images, using a metric based on whole brain fiber tractography. By transforming the gradient table and measuring the average fiber trajectory length, we search for the transformation that ...