A polyclonal model for B-cell tolerance (original) (raw)
1991, Cellular Immunology
Overnight exposure of adult splenic B cells to anti-Ig, a surrogate for antigen/tolerogen, can result in a hyporesponsive state in terms of antibody synthesis. Since B cells treated with either intact of F(ab'), fragments of anti-Ig will exit the Go phase of the cell cycle and enter G, or S, respectively, we examined which steps in B-cell activation were required for this form of hyporesponsiveness. We found that B-cell hyporesponsiveness could be induced under conditions leading to either abortive or productive B-cell cycle progression, depending on the immunogenic challenge employed. Thus, PMA + ionomycin, concanavalin A, PMA alone, or ionomycin alone induced hyporesponsiveness. Each of these reagents is able to drive B-cell exit from Go into Gi and cause class II hyperexpression. We next examined the effect of cyclosporin A (CSA), a reagent that blocks anti-Ig but not by PMA-induced class II hyperexpression. Interestingly, CSA only interfered with the induction of B-cell hyporesponsiveness with anti-Ig. These results suggest that upregulation of MHC class II may be coincident with a CSA-sensitive tolerance pathway in B cells stimulated by anti-Ig. Finally, IL-4 pretreatment was found to ablate hyporesponsiveness induced by either intact anti-Ig or PMA. These results parallel the Fc-dependent induction of hyporesponsiveness reported earlier (G. Warner and D. W. Scott, J. Immunol. 146,2 185, 199 1). We propose that crosslinking of surface Ig, leading to cell cycle progression out of Go as well as class II hyperexpression, in the absence of a cognate T cell signal, leads to B-cell hyporesponsiveness.