A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome (original) (raw)
Related papers
PLoS Pathogens, 2011
Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.
Journal of Bacteriology, 2007
The Salmonella enterica serovar Typhimurium HilA protein is the key regulator for the invasion of epithelial cells. By a combination of genome-wide location and transcript analysis, the HilA-dependent regulon has been delineated. Under invasion-inducing conditions, HilA binds to most of the known target genes and a number of new target genes. The sopB , sopE , and sopA genes, encoding effector proteins secreted by the type III secretion system on Salmonella pathogenicity island 1 (SPI-1), were identified as being both bound by HilA and differentially regulated in an HilA mutant. This suggests a cooperative role for HilA and InvF in the regulation of SPI-1-secreted effectors. Also, siiA , the first gene of SPI-4, is both bound by HilA and differentially regulated in an HilA mutant, thus linking this pathogenicity island to the invasion key regulator. Finally, the interactions of HilA with the SPI-2 secretion system gene ssaH and the flagellar gene flhD imply a repressor function for ...
PhoP-Induced Genes within Salmonella Pathogenicity Island 1
Journal of Bacteriology, 2006
The invasive pathogen Salmonella enterica has evolved a sophisticated device that allows it to enter nonphagocytic host cells. This process requires the expression of Salmonella pathogenicity island 1 (SPI-1), which encodes a specialized type III protein secretion system (TTSS). This TTSS delivers a set of effectors that produce a marked rearrangement of the host cytoskeleton, generating a profuse membrane ruffling at the site of interaction, driving bacterial entry. It has been shown that the PhoP/PhoQ two-component system represses the expression of the SPI-1 machinery by down-regulating the transcription of its master regulator, HilA. In this work, we reveal the presence of a PhoP-activated operon within SPI-1. This operon is composed of the orgB and orgC genes, which encode a protein that interacts with the InvC ATPase and a putative effector protein of the TTSS, respectively. Under PhoP-inducing conditions, expression of this operon is directly activated by the phosphorylated f...
Infection and Immunity, 2008
Updated information and services can be found at: These include: REFERENCES http://iai.asm.org/content/76/3/1024#ref-list-1 at: This article cites 91 articles, 39 of which can be accessed free CONTENT ALERTS more» articles cite this article), Receive: RSS Feeds, eTOCs, free email alerts (when new http://journals.asm.org/site/misc/reprints.xhtml Information about commercial reprint orders: http://journals.asm.org/site/subscriptions/ Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts.
A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium
Nucleic acids research, 2017
Bacterial sRNAs play an important role in regulating many cellular processes including metabolism, outer membrane homeostasis and virulence. Although sRNAs were initially found in intergenic regions, there is emerging evidence that protein coding regions of the genome are a rich reservoir of sRNAs. Here we report that the 5΄UTR of IS200 transposase mRNA (tnpA) is processed to produce regulatory RNAs that affect expression of over 70 genes in Salmonella Typhimurium. We provide evidence that the tnpA derived sRNA base-pairs with invF mRNA to repress expression. As InvF is a transcriptional activator of SPI-1 encoded and other effector proteins, tnpA indirectly represses these genes. We show that deletion of IS200 elements in S. Typhimurium increases invasion in vitro and reduces growth rate, while over-expression of tnpA suppresses invasion. Our work indicates that tnpA acts as an sRNA 'sponge' that sets a threshold for activation of Salmonella pathogenicity island (SPI)-1 eff...
PLoS ONE, 2011
To establish a successful infection within the host, a pathogen must closely regulate multiple virulence traits to ensure their accurate temporal and spatial expression. As a highly adapted intracellular pathogen, Salmonella enterica has acquired during its evolution various virulence genes via numerous lateral transfer events, including the acquisition of the Salmonella Pathogenicity Island 2 (SPI-2) and its associated effectors. Beneficial use of horizontally acquired genes requires that their expression is effectively coordinated with the already existing virulence programs and the regulatory setup in the bacterium. As an example for such a mechanism, we show here that the ancestral PhoPQ system of Salmonella enterica is able to regulate directly the SPI-2 effector gene sseL (encoding a secreted deubiquitinase) in an SsrB-independent manner and that PhoP plays a part in a feed-forward regulatory loop, which fine-tunes the cellular level of SseL. Additionally, we demonstrate the presence of conserved cis regulatory elements in the promoter region of sseL and show direct binding of purified PhoP to this region. Interestingly, in contrast to the S. enterica PhoP, an ortholog regulator from a S. bongori SARC 12 strain was found to be impaired in promoting transcription of sseL and other genes from the PhoP regulon. These findings have led to the identification of a previously uncharacterized residue in the DNA-binding domain of PhoP, which is required for the transcriptional activation of PhoP regulated genes in Salmonella spp. Collectively our data demonstrate an interesting interface between the acquired SsrB regulon and the ancestral PhoPQ regulatory circuit, provide novel insights into the function of PhoP, and highlight a mechanism of regulatory integration of horizontally acquired genes into the virulence network of Salmonella enterica.
Nature Scientific Reports, 2018
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
BMC Microbiology
Background Salmonella enterica serovar Typhimurium is an intestinal pathogen capable of infecting a wide range of animals. It initiates infection by invading intestinal epithelial cells using a type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). The SPI-1 genes are regulated by multiple interacting transcription factors. The master regulator is HilD. HilE represses SPI-1 gene expression by binding HilD and preventing it from activating its target promoters. Previous work found that acetate and nutrients synergistically induce SPI-1 gene expression. In the present study, we investigated the role of HilE, nominally a repressor of SPI-1 gene expression, in mediating this response to acetate and nutrients. Results HilE is necessary for activation of SPI-1 gene expression by acetate and nutrients. In mutants lacking hilE, acetate and nutrients no longer increase SPI-1 gene expression but rather repress it. This puzzling response is not due to the BarA/SirA...
Journal of Bacteriology, 1999
The expression of genes encoding proteins secreted by the SPI1 (Salmonella pathogenicity island) type III secretion apparatus is known to require the transcriptional activators SirA and HilA. However, neither SirA nor HilA is believed to directly activate the promoters of these genes. invF, the first gene of theinv-spa gene cluster, is predicted to encode an AraC-type transcriptional activator and is required for invasion into cultured epithelial cells. However, the genes which are regulated by InvF have not been identified. In this work, an in-frame deletion ininvF was constructed and tested for the expression of Φ(sigD-lacZYA),sipC::Tn5lacZY, and a plasmid-encoded Φ(sicA-lacZYA). SigD (Salmonella invasion gene) is a secreted protein required for the efficient invasion ofSalmonella typhimurium into cultured eucaryotic cells.sicA (Salmonella invasion chaperone) is the first gene of a putative operon encoding the Sip/Ssp (Salmonella invasion/Salmonella secreted proteins) invasion pro...
Molecular Microbiology, 2011
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, posttranscriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events.