Colloidal quantum dot molecules manifesting quantum coupling at room temperature (original) (raw)

Coupled Colloidal Quantum Dot Molecules

Accounts of Chemical Research, 2021

Metrics & More Article Recommendations CONSPECTUS: Electronic coupling and hence hybridization of atoms serves as the basis for the rich properties for the endless library of naturally occurring molecules. Colloidal quantum dots (CQDs) manifesting quantum strong confinement possess atomiclike characteristics with s and p electronic levels, which popularized the notion of CQDs as artificial atoms. Continuing this analogy, when two atoms are close enough to form a molecule so that their orbitals start overlapping, the orbitals energies start to split into bonding and antibonding states made out of hybridized orbitals. The same concept is also applicable for two fused core−shell nanocrystals in close proximity. Their band edge states, which dictate the emitted photon energy, start to hybridize, changing their electronic and optical properties. Thus, an exciting direction of "artificial molecules" emerges, leading to a multitude of possibilities for creating a library of new hybrid nanostructures with novel optoelectronic properties with relevance toward diverse applications including quantum technologies. The controlled separation and the barrier height between two adjacent quantum dots are key variables for dictating the magnitude of the coupling energy of the confined wave functions. In the past, coupled double quantum dot architectures prepared by molecular beam epitaxy revealed a coupling energy of few millielectron volts, which limits the applications to mostly cryogenic operation. The realization of artificial quantum molecules with sufficient coupling energy detectable at room temperature calls for the use of colloidal semiconductor nanocrystal building blocks. Moreover, the tunable surface chemistry widely opens the predesigned attachment strategies as well as the solution processing ability of the prepared artificial molecules, making the colloidal nanocrystals as an ideal candidate for this purpose. Despite several approaches that demonstrated enabling of the coupled structures, a general and reproducible method applicable to a broad range of colloidal quantum materials is needed for systematic tailoring of the coupling strength based on a dictated barrier This Account addresses the development of nanocrystal chemistry to create coupled colloidal quantum dot molecules and to study the controlled electronic coupling and their emergent properties. The simplest nanocrystal molecule, a homodimer formed from two core/shell nanocrystal monomers, in analogy to homonuclear diatomic molecules, serves as a model system. The shell material of the two CQDs is structurally fused, resulting in a continuous crystal. This lowers the potential energy barrier, enabling the hybridization of the electronic wave functions. The direct manifestation of the hybridization reflects on the band edge transition shifting toward lower energy and is clearly resolved at room temperature. The hybridization energy within the single homodimer molecule is strongly correlated with the extent of structural continuity, the delocalization of the exciton wave function, and the barrier thickness as calculated numerically. The hybridization impacts the emitted photon statistics manifesting faster radiative decay rate, photon bunching effect, and modified Auger recombination pathway compared to the monomer artificial atoms. Future perspectives for the nanocrystals chemistry paradigm are also highlighted.

Coupling in quantum dot molecular hetero-assemblies

Materials Research Bulletin, 2021

The design of large-scale colloidal quantum dots (QDs) assemblies and the investigation of their interaction with their close environment are of great interest for improving QD-based optoelectronic devices' performances. Understanding the interaction mechanisms taking place when only a few QDs are assembled at a short interparticle distance is relevant to better promote the charge or energy transfer processes. Here, small hetero-assemblies formed of a few CdSe QDs of two different sizes, connected by alkyl dithiols, are fabricated in solution. The interparticle distance is tuned by varying the linear alkyl chain length of the bifunctional spacer from nanometer to sub-nanometer range. The crystallographic analysis highlights that the nearest surfaces involved in the linkage between the QDs are the (101) faces. The thorough spectroscopic investigation enables a sound rationalization of the coupling mechanism between the interacting nanoparticles, ranging from charge transfer/wavefunction delocalization to energy transfer, depending on their separation distance.

ChemInform Abstract: Spectroscopic Study of Electronic States in an Ensemble of Close-Packed CdSe Nanocrystals

ChemInform, 2001

Nearly monodisperse CdSe quantum dots of 1.8 nm in size were synthesized and capped with a surface monolayer of 1-thioglycerol. The optical properties of thin films made from these matrix-free close-packed quantum dots were studied at different temperatures and electric field strengths and compared with isolated quantum dots of the same size embedded in a PMMA matrix. The broadening and red shift of the optical transitions observed in absorption and excitation spectroscopy for the ensemble of close-packed quantum dots is explained by the formation of collective electronic states between interacting nanocrystals. The reversible collapse of these extended electronic states into localized states was demonstrated for the close-packed quantum dots by applying an external electric field.

Spectroscopic Study of Electronic States in an Ensemble of Close-Packed CdSe Nanocrystals

The Journal of Physical Chemistry B, 2000

Nearly monodisperse CdSe quantum dots of 1.8 nm in size were synthesized and capped with a surface monolayer of 1-thioglycerol. The optical properties of thin films made from these matrix-free close-packed quantum dots were studied at different temperatures and electric field strengths and compared with isolated quantum dots of the same size embedded in a PMMA matrix. The broadening and red shift of the optical transitions observed in absorption and excitation spectroscopy for the ensemble of close-packed quantum dots is explained by the formation of collective electronic states between interacting nanocrystals. The reversible collapse of these extended electronic states into localized states was demonstrated for the close-packed quantum dots by applying an external electric field.

Composition-controlled optical properties of colloidal CdSe quantum dots

Applied Surface Science, 2014

A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV-vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

Energy transfer in colloidal CdTe quantum dot nanoclusters

Optics Express, 2010

Quantum dot (QD) nanoclusters were formed using oppositely charged colloidal CdTe QDs, of two different sizes, mixed in aqueous solutions. The photoluminescence (PL) spectra and time-resolved PL decays show signatures of Förster resonant energy transfer (FRET) from the donor QDs to the acceptor QD in the nanoclusters. A concentration dependence of the donor QD lifetime is observed in mixed solutions with a donor: acceptor ratio greater than 1:1. The concentration dependent timeresolved PL data indicate different regimes of cluster formation, with evidence for donor-to-donor FRET in the larger donor-acceptor nanoclusters and evidence for the formation of all-donor clusters in mixed solutions with high donor concentrations. 2010 Optical Society of America OCIS codes: (000.0000) General; (000.2700) General science. 12. R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova,

Neck Barrier Engineering in Quantum Dot Dimer Molecules via Intraparticle Ripening

Coupled colloidal quantum dot (CQD) dimers represent a new class of artificial molecules composed of fused core/shell semiconductor nanocrystals. The electronic coupling and wavefunction hybridization is enabled by the formation of an epitaxial connection with a coherent lattice between the shells of the two neighboring quantum dots where the shell material and its dimensions dictate the quantum barrier characteristics for the charge carriers. Herein we introduce a colloidal approach to control the neck formation at the interface between the two CQDs in such artificial molecular constructs. This allows the tailoring of the neck barrier in pre-linked homodimers formed via fusion of multifaceted wurtzite CdSe/CdS CQDs. The effects of reaction time, temperature and excess ligands is studied. The neck filling process follows an intraparticle ripening mechanism at relatively mild reaction conditions while avoiding inter-particle ripening. The degree of surface ligand passivation plays a key role in activating the surface atom diffusion to the neck region. The degree of neck filling strongly depends also on the initial relative orientation of the two CQDs, where homonymous plane attachment allows for facile neck growth, unlike the case of heteronymous plane attachment. Upon neck-filling, the observed redshift of the absorption and fluorescence measured both for ensemble and single dimers, is assigned to enhanced hybridization of the confined wavefunction in CQD dimer molecules, as supported by quantum calculations. The fine tuning of the particle interface introduced herein provides therefore a powerful tool to further control the extent of hybridization and coupling in CQD molecules.

Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules

Journal of the American Chemical Society, 2006

Stable dispersions of molecularlike aggregates of CdTe quantum dots are prepared by chemical cross-linking. Cryo-TEM images confirm the presence of cross-linked quantum dots and show that the size of the small aggregates can be controlled by the amount of cross-linker added. Optical measurements reveal two types of interdot interactions within these quantum-dot molecules: exciton energy transfer and electronic coupling. Quantitative information on the energy transfer rates in quantum-dot molecules is obtained by photoluminescence lifetime measurements. The degree of electronic coupling is dependent on the size of the quantum dots, which is supported by quantum mechanical calculations.

Exciton–Exciton Interaction and Optical Gain in Colloidal CdSe/CdS Dot/Rod Nanocrystals

Advanced Materials, 2009

Semiconductor colloidal nanocrystals have been proposed as optically-active media for solution-processable optoelectronic devices, because they combine inexpensive, wet-chemistry synthesis with high photoluminescence quantum yield, large oscillator strength and size tuneability of optical transitions. Key to the success of nanocrystal-based devices is the possibility to design and consistently synthesize nanocrystals with desired properties. Size uniformity can be usually controlled within less than 5% uncertainty; surface capping, passivation and core/shell structures can lead to photoluminescence quantum yields exceeding 50%, optical gain and lasing. A new frontier in nanocrystal design has appeared with heterostructures allowing spatial separation of electron and hole wavefunctions, like in type-II CdSe/CdTe core/shell nanocrystals, through staggered conduction and valence band offsets. Charge separation inside nanocrystals is useful in photodetector and photovoltaic devices, quantum optics and low-threshold lasers. Exciton nonlinearities also depend on the degree of separation of electron and hole wavefunction. In type-II heterostructures, it has been demonstrated that charge separation can lead to a large repulsive exciton-exciton interaction. The resulting blueshift of the exciton-to-biexciton transition suppresses to a large extent resonant re-absorption of stimulated emission from single-exciton states, allowing net optical gain and lasing at excitations corresponding to less than one electron-hole pair per nanocrystal. In this regime, losses inherent to multiexciton recombinations are avoided, resulting in optical gain with a much longer lifetime, an essential step towards the demonstration of lasing under continuous wave operation.