ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth (original) (raw)

Growth and photoluminescence study of ZnSe quantum dots

Journal of Electronic Materials, 2000

We report detailed photoluminescence (PL) studies of ZnSe quantum dots grown by controlling the flow duration of the precursors in a metal-organic chemical vapor deposition system. The growth time of the quantum dots determines the amount of blue shift observed in the PL measurements. Blue shift as large as 320 meV was observed, and the emission was found to persist up to room temperature. It is found that changing the flow rate and the total number of quantum dot layers also affect the peak PL energy. The temperature dependence of the peak PL energy follows the Varshni relation. From analyzing the temperature-dependent integrated intensity of the photoluminescence spectra, it is found that the activation energy for the quenching of photoluminescence increases with decreasing quantum dot size, and is identified as the binding energy of the exciton in ZnSe quantum dot.

Enhancement of Temperature Fluorescence Brightness of Zn@Si Core-Shell Quantum Dots Produced via a Unified Strategy

Nanomaterials, 2021

Despite many dedicated efforts, the fabrication of high-quality ZnO-incorporated Zinc@Silicon (Zn@Si) core–shell quantum dots (ZnSiQDs) with customized properties remains challenging. In this study, we report a new record for the brightness enhancement of ZnSiQDs prepared via a unified top-down and bottom-up strategy. The top-down approach was used to produce ZnSiQDs with uniform sizes and shapes, followed by the bottom-up method for their re-growth. The influence of various NH4OH contents (15 to 25 µL) on the morphology and optical characteristics of ZnSiQDs was investigated. The ZnSiQDs were obtained from the electrochemically etched porous Si (PSi) with Zn inclusion (ZnPSi), followed by the electropolishing and sonication in acetone. EFTEM micrographs of the samples prepared without and with NH4OH revealed the existence of spherical ZnSiQDs with a mean diameter of 1.22 to 7.4 nm, respectively. The emission spectra of the ZnSiQDs (excited by 365 nm) exhibited bright blue, green, o...

Synthesis of ZnSe Quantum Dots and ZnSe–ZnS Core/Shell Nanostructures

Journal of Nanoscience and Nanotechnology, 2007

Colloidal ZnSe nanocrystals were synthesized in hot mixtures of long-chain alkylamines, fatty acids, and alkylphosphines. It was possible to tune the size of nanocrystals by varying the reaction time. Transmission electron microscope images showed the presence of spherical ZnSe nanocrystals and X-ray diffraction pattern of ZnSe nanocrystals showed the existence of both the crystalline phase, namely, wurtzite and zinc blende. The ZnSe nanocrystals were then passivated with higher band gap ZnS; this lead to a 2.6-fold enhancement in the integrated photoluminescence intensity of ZnSe nanocrystals. We also synthesized the reverse type core/shell ZnS/ZnSe nanocrystals. These exhibited a significant red shift in the absorption edge after coating with a thin ZnSe shell.

Blue Luminescence from (CdS)ZnS Core–Shell Nanocrystals

Angewandte Chemie International Edition, 2004

The ability to synthesize semiconductor nanocrystals with narrow size distributions and high luminescent efficiencies has made quantum dots an attractive alternative to organic molecules in applications such as optoelectronic devices [1, 2] and biological fluorescence labeling. [3-5] Not only are quantum dots (QDs) more stable to photooxidation relative to organic molecules, but their fluorescence is also more saturated (narrow emission bandwidths). Their size-tunable optical properties, which are independent of their chemical

Synthesis and optical properties of core/shell ternary/ternary CdZnSe/ZnSeS quantum dots

Optical Materials, 2014

In this paper we report on the synthesis of ternary/ternary alloyed CdZnSe/ZnSeS core/shell quantum dots (QDs) by embryonic nuclei-induced alloying process. We synthesized CdZnSe core QDs emitting in the spectral range of 530-607 nm with various Cd/Zn ratios, depending on the core synthesis temperature. By shelling ZnSeS on the CdZnSe core QDs, the average luminescence quantum yield is increased by a typical factor of 2 up to 17, which we attribute to the reduction of number of non-emitting QDs. The singlephoton emitter micro-photoluminescence study showed that the CdZnSe/ZnSeS core/shell QDs are good single-photon emitters and their blinking properties were improved compared to the CdZnSe core QDs. Quantum yields up to 25% were measured for the core/shell samples, demonstrating the potential for high-quality ternary/ternary QDs fabrication.

Highly Luminescent and Photostable Core/Shell/Shell ZnSeS/Cu:ZnS/ZnS Quantum Dots Prepared via a Mild Aqueous Route

Nanomaterials

An aqueous-phase synthesis of 3-mercaptopropionic acid (3-MPA)-capped core/shell/shell ZnSeS/Cu:ZnS/ZnS QDs was developed. The influence of the Cu-dopant location on the photoluminescence (PL) emission intensity was investigated, and the results show that the introduction of the Cu dopant in the first ZnS shell leads to QDs exhibiting the highest PL quantum yield (25%). The influence of the Cu-loading in the dots on the PL emission was also studied, and a shift from blue–green to green was observed with the increase of the Cu doping from 1.25 to 7.5%. ZnSeS/Cu:ZnS/ZnS QDs exhibit an average diameter of 2.1 ± 0.3 nm and are stable for weeks in aqueous solution. Moreover, the dots were found to be photostable under the continuous illumination of an Hg–Xe lamp and in the presence of oxygen, indicating their high potential for applications such as sensing or bio-imaging.

Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution

Journal of Materials Chemistry, 2007

This paper describes the synthesis of highly water-soluble and fluorescent ZnSe(S)-alloyed quantum dots (QDs). We used zinc perchlorate hexahydrate, sodium hydrogen selenide as precursors and mercaptopropionic acid as stabilizer to synthesize ZnSe QDs in aqueous solution at 160 uC for 9 h. The as-prepared ZnSe QDs possess a quantum yield (QY) of 8.1% and high trapped emission. After UV irradiation using a 100 W Hg-Xe lamp for 0.5 h, ZnSe(S) QDs having a QY of 19.0% are formed from ZnSe QDs. However, aggregation of ZnSe(S) QDs under longer UV irradiation (. 0.5 h) takes place, leading to instability and irreproducibility. To overcome this, additional thiol compounds (mercaptopropionic acid, mercaptosuccinic acid, 11-mercaptoundecanoic acid, and thioglycolic acid) were separately added to ZnSe QD solutions during UV irradiation. UV irradiation and oxygen accelerate the release of S 22 from the thiol compounds, leading to the formation of ZnSe(S) QDs. Among the thiol compounds, mercaptosuccinic acid is the most suitable in terms of stability and photoluminescence intensity. We suggest that the size and functional group of the thiol compounds play an important role in determining the optical properties and stability of ZnSe(S) QDs. The as-prepared ZnSe(S) QDs fluoresce strongly (QY up to 44.0%) at 407 nm with a narrow bandwidth (W 1/2 , 25 nm) when excited at 325 nm.

Up-Scalable Synthesis of Size-Controlled White-Green Emitting Behavior of Core/Shell (CdSe/ZnS) Quantum Dots for LED Application

ASP, 2018

Research on CdSe/ZnS core–shell quantum dots (QDs) was synthesized by a chemical route using bio-conjugated organic amino acid (L-Cysteine). The structural, morphological, and optical properties of the nanocrystal powder samples were analyzed using various characterization techniques. The diameter of the resulting QDs was about 3 nm with uniform size distribution. The optical properties QDs exhibited an absorption and emission peak at 515 and 525 nm respectively, at room temperature. The QDs through emission in the spectral range at 516–535 nm is special for their application in green LEDs and white-light generation. The high optical properties performance of the QDs nanocomposites gained indicates that the materials are promising for (LED) applications.

Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe

Physica Scripta

An efficient fluorescence probe based on ZnSe(S) alloyed quantum dots (QDs) has been reported here. The alloyed QDs were prepared through an aqueous route, where 3-mercaptopropionic acid (MPA) was employed as the effective precursor for both the sulfur source and stabilizer in the development of the alloyed system. Five-fold quantum yield (QY) enhancement was obtained for the ZnSe(S) QDs compared to the ZnSe QDs, formed in the initial stage of the refluxing process. The ultimate alloyed systems retained their high biocompatibility characteristics similar to the conventional ZnSe QDs. The photoluminescence of the ZnSe(S) QDs showed pH dependence, which was also evidenced in mammalian lymphocyte cells suspended in biological buffer over a wide pH range of 4.00–12.00. These characteristics make our prepared ZnSe(S) an efficient system for development of cell tracking, monitoring and sensing intracellular nanoprobes and devices.

Up-Scalable Synthesis of Size-Controlled White-Green Emitting Behavior of Core/Shell (CdSe/ZnS) Quantum Dots for LED Applications

Journal of Nanoscience and Nanotechnology, 2019

Research on CdSe/ZnS core-shell quantum dots (QDs) was synthesized by a chemical route using bio-conjugated organic amino acid (L-Cysteine). The structural, morphological, and optical properties of the nanocrystal powder samples were analyzed using various characterization techniques. The diameter of the resulting QDs was about 3 nm with uniform size distribution. The optical properties QDs exhibited an absorption and emission peak at 515 and 525 nm respectively, at room temperature. The QDs through emission in the spectral range at 516-535 nm is special for their application in green LEDs and white-light generation. The high optical properties performance of the QDs nanocomposites gained indicates that the materials are promising for (LED) applications.