In ovo injection of branched‐chain amino acids: Embryonic development, hatchability and hatching quality of turkey poults (original) (raw)

Abstract

Poultry productivity depends upon post-hatch efficacy characteristics such as growth, meat yield and egg production. The embryonic growth and development rate, a determinant of these characteristics, should be at the optimum level during the perinatal period (the last few days prior to hatch and the first few days after hatch). In poultry, current evidence on poultry embryo development (Uni, Ferket, Tako, & Kedar, 2005; Gao et al., 2018) indicates that the perinatal period is the most crucial time for growth and developmental programming of metabolically active organs and tissues: liver, heart, pancreas, gastrointestinal tract (GIT) and skeletal muscles. These organs and tissues carry out many important digestive, metabolic and excretory activities, which have a significant role in health and productivity (Foye, Uni, & Ferket, 2006). The development and growth of embryos are influenced by nutrients in the albumen and yolk used as the main source of amino acids for tissue synthesis (Shafey, Sami, & Abouheif, 2013). Therefore, muscle production and protein synthesis in the late-term embryo depend on the amounts of amino acids flowing into the amniotic cavity, the yolk-sac (YS) and finally the digestive tract of the embryo. The types and amounts of amino acids in the albumen and yolk are influenced by several factors (e.g.,

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (35)

  1. experiment is not an unnecessary repetition of previous experi- ments. The authors are grateful for the support of the staff and facil- ities of Animal Science Department, Faculty of Agriculture, Ondokuz Mayis University.
  2. CO N FLI C T O F I NTE R E S T Authors declare that they have no conflict of interests.
  3. O RCI D Canan Kop-Bozbay https://orcid.org/0000-0002-8071-5860
  4. Bai, J., Greene, E., Li, W., Kidd, M. T., & Dridi, S. (2015). Branched-chain amino acids modulate the expression of hepatic fatty acid metabo- lism-related genes in female broiler chickens. Molecular Nutrition & Food Research, 59, 1171-1181. https ://doi.org/10.1002/mnfr.20140 0918
  5. Bakyaraj, S., Bhanja, S. K., Majumdar, S., & Dash, B. (2012). Modulation of post-hatch growth and immunity through in ovo supplemented nutri- ents in broiler chickens. Journal of the Science of Food and Agriculture, 92, 313-320. https ://doi.org/10.1002/jsfa.4577
  6. Bhanja, S. K., & Mandal, A. B. (2005). Effect of in ovo injection of criti- cal amino acids on pre-and post-hatch growth, immunocompetence and development of digestive organs in broiler chickens. Asian- Australasian Journal of Animal Sciences, 18, 524-531. https ://doi. org/10.5713/ajas.2005.524
  7. Bhattacharyya, A., Majumdar, S., Bhanja, S. K., Mandal, A. B., & Kadam, M. (2018). Effect of maternal dietary manipulation and in ovo injec- tion of nutrients on the hatchability indices, post-hatch growth, feed consumption, feed conversion ratio and immunocompetence traits of turkey poults. Journal of Applied Animal Research, 46, 287-294. https ://doi.org/10.1080/09712 119.2017.1296843
  8. Chang, Y., Cai, H., Liu, G., Chang, W., Zheng, A., Zhang, S., & Tian, J. (2015). Effects of dietary leucine supplementation on the gene ex- pression of mammalian target of rapamycin signaling pathway and in- testinal development of broilers. Animal Nutrition, 1, 313-319. https ://doi.org/10.1016/j.aninu.2015.11.005
  9. Elghazi, L., Blandino-Rosano, M., Alejandro, E., Cras-Méneur, C., & Bernal- Mizrachi, E. (2017). Role of nutrients and mTOR signaling in the regu- lation of pancreatic progenitors development. Molecular Metabolism, 6, 560-573. https ://doi.org/10.1016/j.molmet.2017.03.010
  10. Foye, O. T., Uni, Z., & Ferket, P. R. (2006). Effect of in ovo feeding egg white protein, β-hydroxy-β-methylbutyrate, and carbohydrates on glycogen status and neonatal growth of turkeys. Poultry Science, 85, 1185-1192. https ://doi.org/10.1093/ps/85.7.1185
  11. Foye, O. T., Ferket, P. R., & Uni, Z. (2007). The effects of in ovo feed- ing arginine, β-hydroxy-β-methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults. Poultry Science, 86, 2343-2349. https ://doi.org/10.3382/ ps.2007-00110
  12. Gao, T., Zhao, M. M., Li, Y. J., Zhang, L., Li, J. L., Yu, L. L., Gao, F., & Zhou, G. H. (2018). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post- hatch performance of broiler embryos and hatchlings. Journal of Animal Physiology and Animal Nutrition, 102, 166-175. https ://doi. org/10.1111/jpn.12724
  13. Ghanaatparast-Rashti, M., Mottaghitalab, M., & Ahmadi, H. (2018a). In ovo feeding of beta-hydroxy beta-methylbutyrate and dextrin optimized growth performance of broiler for pre-placement hold- ing time using the Box-Behnken response surface design. Journal of Animal Physiology and Animal Nutrition, https ://doi.org/10.1111/ jpn.12960
  14. Ghanaatparast-Rashti, M., Mottaghitalab, M., & Ahmadi, H. (2018b). In ovo feeding of nutrients and its impact on post-hatching water and feed deprivation up to 48 hr, energy status and jejunal morphology of chicks using response surface models. Journal of Animal Physiology and Animal Nutrition, 102, 806-817. https ://doi.org/10.1111/ jpn.12838
  15. Han, G., Yang, H., Bahry, M. A., Tran, P. V., Do, P. H., Ikeda, H., Furuse, M., & Chowdhury, V. S. (2017). L-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotol- erance in broiler chicks. Comparative Biochemistry and Physiology- Part A: Molecular & Integrative Physiology, 204, 48-56. https ://doi. org/10.1016/j.cbpa.2016.10.013
  16. Kita, K., Ito, K. R., Sugahara, M., Kobayashi, M., Makino, R., Takahashi, N., Nakahara, H., Takahashi, K., & Nishimukai, M. (2015). Effect of in ovo administration of branched-chain amino acids on embryo growth and hatching time of chickens. Journal of Poultry Science, 52, 34-36. https ://doi.org/10.2141/jpsa.0130208
  17. Kornasio, R., Riederer, I., Butler-Browne, G., Mouly, V., Uni, Z., & Halevy, O. (2009). Betahydroxy-beta-methylbutyrate (HMB) stimulates myo- genic cell proliferation, differentiation and survival via the MAPK/ ERK and PI3K/Akt pathways. Biochimica Et Biophysica Acta, 1793, 755-763. https ://doi.org/10.1016/j.bbamcr.2008.12.017
  18. Kop-Bozbay, C., & Ocak, N. (2015a). Body weight, meat quality and blood metabolite responses to carbohydrate administration in the drink- ing water during pre-slaughter feed withdrawal in broilers. Journal of Animal Physiology and Animal Nutrition, 99, 290-298. https ://doi. org/10.1111/jpn.12194
  19. Kop-Bozbay, C., & Ocak, N. (2015b). Growth, digestive tract and mus- cle weights in slow-growing broiler is not affected by a blend of branched-chain amino acids injected into different sites of egg. Journal of Agriculture and Environmental Sciences, 4, 261-269. https :// doi.org/10.15640/ jaes.v4n1a32
  20. Liu, H. H., Wang, J. W., Zhang, R. P., Chen, X., Yu, H. Y., Jin, H. B., Li, L., Han, C. C., Xu, F., Kang, B., He, H., & Xu, H. Y. (2011). In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation. Journal of Cellular Physiology, 227, 1465-1475. https ://doi.org/10.1002/jcp.22862
  21. Li, F., Yin, Y., Tan, B., Kong, X., & Wu, G. (2011). Leucine nutrition in ani- mals and humans: mTOR signaling and beyond. Amino Acids, 41, 1185. https ://doi.org/10.1007/s00726-011-0983-2
  22. Nimalaratne, C., Lopes-Lutz, D., Schieber, A., & Wu, J. (2011). Free aromatic amino acids in egg yolk show antioxidant properties. Food Chemistry, 129, 155-161. https ://doi.org/10.1016/j.foodc hem.2011.04.058
  23. Ohta, Y., & Kidd, M. T. (2001). Optimum site for in ovo amino acid injec- tion in broiler breeder eggs. Poultry Science, 80, 1425-1429. https :// doi.org/10.1093/ps/80.10.1425
  24. Shafey, T. M., Al-Batshan, H. A., Al-Owaimer, A. N., & AL-Samawei, K. A. (2010). Effects of in ovo administration of L-carnitine on hatch- ability performance, glycogen status and insulin-like growth factor-1 of broiler chickens. British Poultry Science, 51, 122-131. https ://doi. org/10.1080/00071 66090 3271190
  25. Shafey, T. M., Alodan, M. A., Al-Ruqaie, I. M., & Abouheif, M. A. (2012). In ovo feeding of carbohydrates and incubated at a high incubation tem- perature on hatchability and glycogen status of chicks. South African Journal of Animal Science, 42, 210-220. https ://doi.org/10.4314/ sajas.v42i3.2
  26. Shafey, T. M., Sami, A. S., & Abouheif, M. A. (2013). Effects of in ovo feed- ing of L-glutamine on hatchability performance and hatching time of meat-type breeder eggs. Journal of Animal and Veterinary Advances, 12, 135-139. https ://doi.org/10.3923/javaa.2013.135.139
  27. Shafey, T. M., Mahmoud, A. H., Alsobayel, A. A., & Abouheif, M. A. (2014). Effects of in ovo administration of amino acids on hatchabil- ity and performance of meat chickens. South African Journal of Animal Science, 44, 123-130. https ://doi.org/10.4314/sajas.v44i2.4
  28. Sell, J. L., Angel, C. R., Piquer, F. J., Mallarino, E. G., & Al-Batshan, H. A. (1991). Developmental patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poultry Science, 70, 1200- 1205. https ://doi.org/10.3382/ps.0701200
  29. Tona, K., Bamelis, F., de Ketelaere, B., Bruggeman, V., Moraes, V. M., Buyse, J., Onagbesan, O., & Decuypere, E. (2003). Effects of egg stor- age time on spread of hatch, chick quality, and chick juvenile growth. Poultry Science, 82, 736-741. https ://doi.org/10.1093/ps/82.5.736
  30. Trampel, D. W., Sell, J. L., Ahn, D. U., & Sebranek, J. G. (2005). Preharvest feed withdrawal affects liver lipid and liver color in broiler chickens. Poultry Science, 84, 137-142. https ://doi.org/10.1093/ps/84.1.137
  31. Uni, Z., Ferket, P. R., Tako, E., & Kedar, O. (2005). In ovo feding improves energy status of late-term chicken embryos. Poultry Science, 84, 764- 770. https ://doi.org/10.1093/ps/84.5.764
  32. Vargas, F. S. C., Baratto, T. R., Magalhães, F. R., Maiorka, A., & Santin, E. (2009). Influences of breeder age and fasting after hatching on the performance of broilers. The Journal of Applied Poultry Research, 18, 8-14. https ://doi.org/10.3382/japr.2008-00029
  33. Yalcin, S., Ozkan, S., Cabuk, M., Buyse, J., Decuypere, E., & Siegel, P. B. (2005). Pre-and postnatal conditioning induced thermotolerance on body weight, physiological responses and relative asymmetry of broilers originating from young and old breeder flocks. Poultry Science, 84, 967-976. https ://doi.org/10.1093/ps/84.6.967
  34. Yaman, M. A., Kita, K., & Okumura, J. (2000). Different responses of pro- tein synthesis to refeeding in various muscles of fasted chicks. British Poultry Science, 41, 224-228. https ://doi.org/10.1080/00071 66005 0022317
  35. Zhang, S., Zeng, X., Ren, M., Mao, X., & Qiao, S. (2017). Novel meta- bolic and physiological functions of branched chain amino acids: A Review. Journal of Animal Science and Biotechnology, 8, 10. https ://doi. org/10.1186/s40104-016-0139-z