Role of netrin UNC‐6 in patterning the longitudinal nerves of Caenorhabditis elegans (original) (raw)

Lim, Y.S., Mallapur, S., Kao, G., Ren, X.C. & Wadsworth, W.G. Netrin UNC-6 and the regulation of branching and extension of motoneuron axons from the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 19, 7048-7056

The Journal of Neuroscience : The Official Journal of the Society for Neuroscience

In the Caenorhabditis elegans embryo, some ventral midline motoneurons extend a process circumferentially to the dorsal midline and a process longitudinally along ventral nerve cord interneurons. Circumferential migrations are guided by netrin UNC-6, which repels motoneuron axons dorsally. Although the motoneuron cell bodies and the longitudinal axons are positioned along UNC-6-expressing interneurons in the ventral nerve cord, the circumferential processes extend only from the motoneuron cell bodies and from defined locations along some longitudinal axons. This implies a mechanism regulates motoneuron branching of UNC-6-responsive processes. We show that expression of unc-6DeltaC, which encodes UNC-6 without domain C, partially rescues circumferential migration defects in unc-6 null animals. This activity depends on the netrin receptors UNC-5 and UNC-40. These results indicate that UNC-6DeltaC can provide the circumferential guidance functions of UNC-6. Furthermore, we show that ex...

Extracellular Matrix Regulates UNC-6 (Netrin) Axon Guidance by Controlling the Direction of Intracellular UNC-40 (DCC) Outgrowth Activity

How extracellular molecules influence the direction of axon guidance is poorly understood. The HSN axon of Caenorhabditis elegans is guided towards a ventral source of secreted UNC-6 (netrin). The axon's outgrowth response to UNC-6 is mediated by the UNC-40 (DCC) receptor. We have proposed that in response to the UNC-6 molecule the direction of UNC-40mediated axon outgrowth is stochastically determined. The direction of guidance is controlled by asymmetric cues, including the gradient of UNC-6, that regulate the probability that UNC-40-mediated axon outgrowth is directed on average, over time, in a specific direction. Here we provide genetic evidence that a specialized extracellular matrix, which lies ventral to the HSN cell body, regulates the probability that UNC-40-mediated axon outgrowth will be directed ventrally towards the matrix. We show that mutations that disrupt the function of proteins associated with this matrix, UNC-52 (perlecan), UNC-112 (kindlin), VAB-19 (Kank), and UNC-97 (PINCH), decrease the probability of UNC-40-mediated axon outgrowth in the ventral direction, while increasing the probability of outgrowth in the anterior and posterior directions. Other results suggest that INA-1 (a integrin) and MIG-15 (NIK kinase) signaling mediate the response in HSN. Although the AVM axon also migrates through this matrix, the mutations have little effect on the direction of AVM axon outgrowth, indicating that responses to the matrix are cell-specific. Together, these results suggest that an extracellular matrix can regulate the direction of UNC-6 guidance by increasing the probability that UNC-40-mediated axon outgrowth activity will be oriented in a specific direction.

The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002

Migrating axons require the correct presentation of guidance molecules, often at multiple choice points, to find their target. Netrin 1, a bifunctional cue involved in both attracting and repelling axons, is involved in many cell migration and axon pathfinding processes in the CNS. The netrin 1 receptor DCC and its Caenorhabditis elegans homolog UNC-40 have been implicated in directing the guidance of axons toward netrin sources, whereas the C. elegans UNC-6 receptor, UNC-5 is necessary for migrations away from UNC-6. However, a role of vertebrate UNC-5 homologs in axonal migration has not been demonstrated. We demonstrate that the Unc5h3 gene product, shown previously to regulate cerebellar granule cell migrations, also controls the guidance of the corticospinal tract, the major tract responsible for coordination of limb movements. Furthermore, we show that corticospinal tract fibers respond differently to loss of UNC5H3. In addition, we observe corticospinal tract defects in mice ...

Neuronal polarization by UNC-6 (netrin) / UNC-40 (DCC) signaling is not determined by the asymmetric distribution of UNC-6

2009

The polarization of post-mitotic neurons is poorly understood. Pre-existing spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any pre-established asymmetric cues. In C. elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface.

UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation

Nature Neuroscience, 2006

6/Netrin and its receptor UNC-40/DCC are conserved regulators of growth cone guidance. By directly observing developing neurons in vivo, we show that UNC-6 and UNC-40 also function during axon formation to initiate, maintain and orient asymmetric neuronal growth. The immature HSN neuron of Caenorhabditis elegans breaks spherical symmetry to extend a leading edge toward ventral UNC-6. In unc-6 and unc-40 mutants, leading edge formation fails, the cell remains symmetrical until late in development and the axon that eventually forms is misguided. Thus netrin has two activities: one that breaks neuronal symmetry and one that guides the future axon. As the axon forms, UNC-6, UNC-40 and the lipid modulators AGE-1/phosphoinositide 3-kinase (PI3K) and DAF-18/PTEN drive the actin-regulatory pleckstrin homology (PH) domain protein MIG-10/lamellipodin ventrally in HSN to promote asymmetric growth. The coupling of a directional netrin cue to sustained asymmetric growth via PI3K signaling is reminiscent of polarization in chemotaxing cells.

Neuroglia and Pioneer Neurons Express UNC-6 to Provide Global and Local Netrin Cues for Guiding Migrations in C. elegans

Neuron, 1996

Netrins are laminin-related proteins that guide circumferential migrations on the ectoderm. To understand how netrin cues direct cell movements, we examined the expression of nematode netrin UNC-6 from embryo to adult. UNC-6 is expressed in 12 types of neuroglia and neurons, creating a hierarchy of netrin cues in the developing nervous system. Comparing gene expression pattern with in vivo phenotypes, we suggest how multiple netrin cues, each with a characteristic role, guide cells and axons during development. We also present the molecular analysis of selective loss-of-function and null alleles. The results indicate that the biological activities of netrins are mediated through distinct protein domains. Subtle mutations in domain VI can produce selective defects in both direction- and tissue-specific guidance. EGF-like module V-2 is essential for dorsal guidance activity; we infer this module is important for interactions between UNC-6 and the dorsal guidance receptor UNC-5.