Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method (original) (raw)

Abstract

We propose to apply the recently introduced local projection stabilization to the numerical computation of the Oseen equation at high Reynolds number. The discretization is done by nested finite element spaces. Using a priori error estimation techniques, we prove the convergence of the method. The a priori estimates are independent of the local Peclet number and give a sufficient condition for the size of the stabilization parameters in order to ensure optimality of the approximation when the exact solution is smooth. Moreover, we show how this method may be cast in the framework of variational multiscale methods. We indicate what modeling assumptions must be made to use the method for large eddy simulations.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. F. Auteri, N. Parolini, and L. Quartapelle, Numerical investigation on the stability of singular driven cavity flow, J. Comput. Phys., 183 (2002), pp. 1-25.
  2. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 38 (2001), pp. 173-199.
  3. R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equa- tions, in Numerical Mathematics and Advanced Applications, M. Feistauer et al., eds., ENUMATH 2003, Springer-Verlag, Berlin, 2004, pp. 123-130.
  4. F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), pp. 571-587.
  5. E. Burman and P. Hansbo, The edge stabilization method for finite elements in CFD, in Numerical Mathematics and Advanced Applications, M. Feistauer et al., eds., ENUMATH 2003, Springer-Verlag, Berlin, 2004.
  6. E. Burman and P. Hansbo, A stabilized non-conforming finite element method for incom- pressible flow, Comp. Meth. Mech. Eng., in press, 2005.
  7. W. Cazemir, R. Verstappen, and A. Veldman, Proper orthogonal decomposition and low- dimensional models for the driven cavity flows, Phys. Fluids, 10 (1998), pp. 1685-1699.
  8. P. Clément, Approximation by finite element functions using local regularization, RAIRO, Anal. Numer., 9 (1975), pp. 77-84.
  9. S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids, 13 (2001), pp. 1800-1806.
  10. T. Dubois, F. Jauberteau, and R. Temam, Incremental unknowns, multilevel methods and the numerical simulation of turbulence, Comput. Methods Appl. Mech. Engrg., 159 (1998), pp. 123-189.
  11. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
  12. V. Girault and P.-A. Raviart, Finite Elements for the Navier Stokes Equations, Springer- Verlag, Berlin, 1986.
  13. O. Goyon, High-Reynolds number solutions of Navier-Stokes equations using incremental unknowns, Comput. Methods Appl. Mech. Engrg., 130 (1996), pp. 319-335.
  14. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 1293-1316.
  15. J. R. T. Hughes, L. Mazzei, and A. A. Oberai, The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence, Phys. Fluids, 13 (2001), pp. 505- 511.
  16. J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math., 15 (2001), pp. 311-331.
  17. Y.-H. Peng, Y.-H. Shiau, and R. Hwang, Transition in a 2d lid-driven cavity flow, Comput. & Fluids, 32 (2003), pp. 337-352.
  18. T. C. Rebollo and A. D. Delgado, A unified analysis of mixed and stabilized finite element solutions of Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 182 (2000), pp. 301-331.
  19. L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying bound- ary conditions, Math. Comp., 54 (1990), pp. 483-493.
  20. G. Tiesinga, F. Wubs, and A. Veldman, Bifurcation analysis of incompressible flow in a cavity by the Newton-Picard method, J. Comput. Appl. Math., 140 (2002), pp. 751-772.