Effect of Cell Migration on the Maintenance of Tension on a Collagen Matrix (original) (raw)
Related papers
Dynamic protrusive cell behaviour generates force and drives early matrix contraction by fibroblasts
Experimental Cell Research, 2007
We investigated the cellular mechanisms underlying force generation and matrix contraction, using human corneal, Tenon's and scleral fibroblasts in a standard collagen matrix. We used timelapse light and confocal reflection microscopy to analyse concomitantly cell behaviour and matrix remodeling during contraction and devised a novel index to quantify dynamic cell behaviour in 3D. Based on the previously described culture force monitor, a novel simultaneous imaging and micro-culture force monitor system (SIM-CFM) was developed to measure the mechanical strain generated during matrix contraction whilst simultaneously recording cell and matrix behaviour. Ocular fibroblasts show marked differences in macroscopic matrix contraction profiles, with corneal fibroblasts inducing the strongest, and scleral the weakest, contraction. We identified four factors that determine the early matrix contraction profile: 1) cell size, 2) intrinsic cellular force, 3) dynamic cell protrusive activity and 4) net pericellular matrix displacement. Intrinsic cellular force and dynamic activity appear to be independent unique characteristics of each cell type and might serve as predictors of matrix contraction. The identification of these factors raises the fundamental new possibilities of predicting the ability of tissues to contract and scar and of modulating tissue contraction by targeting intracellular pathways linked to protrusive activity and force generation.
New technologies in vitro for analysis of cell movement on or within collagen gels
Matrix Biology, 2002
The movement of cells through extracellular matrix (ECM) is a critical component of many normal and pathological processes in vivo. Consequently, efforts to characterize motility-associated interactions between cells and ECM have led to the development of methods to observe and quantify (assay) the movement of cells under simplified conditions in vitro. In this report, we describe a novel method (the bullseye assay) and apparatus for the concentration of cells into small, precisely sized and shaped circular disks (bullseyes) that serve as starting points for migration of cells within ECM. The same apparatus is used to form the bullseyes and position them at the center of flat disks (windows) of gelled collagen that are supported at the edges by rings of nylon mesh. Complete assemblies, each consisting of a bullseye, collagen window and nylon mesh ring, are transferred to tissue culture wells for assay of cell migration either within or on top of the collagen window. Studies of the migratory responses of three different cell types to specific cytokines demonstrated that the bullseye assay was sensitive, rapid to set up, and easy to use. In conjunction with the bullseye assay, we developed a novel annular grayscale method for quantification of cell migration from digital images. The method is easily mastered, is derived from a measurement program in the public domain, is not subjective and is more discriminative than other techniques of measurement. ᮊ
Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices
Journal of the Royal Society, Interface, 2017
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called 'en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The r...
Cell motility and mechanics in three-dimensional collagen matrices
Annual review of cell and developmental biology, 2010
Fibrous connective tissues provide mechanical support and frameworks for other tissues of the body and play an integral role in normal tissue physiology and pathology. Three-dimensional collagen matrices exhibit mechanical and structural features that resemble fibrous connective tissue and have become an important model system to study cell behavior in a tissue-like environment. This review focuses on motile and mechanical interactions between cells-especially fibroblasts-and collagen matrices. We describe several matrix contraction models, the interactions between fibroblasts and collagen fibrils at global and subcellular levels, unique features of mechanical feedback between cells and the matrix, and the impact of the cell-matrix tension state on cell morphology and mechanical behavior. We develop a conceptual framework to explain the balance between cell migration and collagen translocation including the concept of promigratory and procontractile growth factor environments. Finally, we review the significance of these concepts for the physiology of wound repair. 335 Annu. Rev. Cell Dev. Biol. 2010.26:335-361. Downloaded from www.annualreviews.org by University of Texas Southwestern Medical Center on 07/11/14. For personal use only.
Journal of Cellular Physiology, 1998
Many soft connective tissues are under endogenous tension, and their resident cells generate considerable contractile forces on the extracellular matrix. The present work was aimed to determine quantitatively how fibroblasts, grown within three-dimensional collagen lattices, respond mechanically to precisely defined tensional loads. Forces generated in response to changes in applied load were measured using a tensional culture force monitor. In a number of variant systems, resident cells consistently reacted to modify the endogenous matrix tension in the opposite direction to externally applied loads. That is, increased external loading was followed immediately by a reduction in cellmediated contraction whilst decreased external loading elicited increased contraction. Responses were cell-mediated and not a result of material properties of the matrices. This is the first detailed characterisation of a tensional homeostatic response in cells. The maintained force, after 8 h in culture, was typically around 40 -60 dynes/million cells). Maintenance of an active tensional homeostasis has widespread implications for cells in culture and for whole tissue function.
Biophysical Journal, 2009
Cell types from many tissues respond to changes in substrate stiffness by actively remodeling their cytoskeletons to alter spread area or adhesion strength, and in some cases changing their own stiffness to match that of their substrate. These cell responses to substrate stiffness are linked to substrate-induced changes in the state, localization, and amount of numerous proteins, but detailed evidence for the requirement of specific proteins in these distinct forms of mechanical response are scarce. Here we use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of filamin A in cell responses to mechanical stimuli and dissociate cell spreading and stiffening by contrasting responses of a pair of human melanoma-derived cell lines that differ in expression of this actin cross-linking protein. M2 melanoma cells null for filamin A do not alter their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors, but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change adherent area on both substrates and respond more strongly to collagen I-coated gels than to fibronectin-coated gels. Strikingly, A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7 cells on the softest gels examined (1000 Pa). Comparison of cell spreading and cell stiffening on the same gradient substrates shows that cell spreading is uncoupled from stiffening. At saturating collagen and fibronectin concentrations, adhesion of M2 cells is reduced compared to that of A7 cells to an extent approximately equal to the difference in adherent area. Filamin A appears to be essential for cell stiffening on collagen, but not for cell spreading on fibronectin. These results have implications for different models of cell protrusion and adhesion and identify a key role for filamin A in altering cellular stiffness that cannot be compensated for by other actin cross-linkers in vivo.
Micromechanics of Fibroblast Contraction of a Collagen–GAG Matrix
Experimental Cell Research, 2001
The contractile force developed by fibroblasts has been studied by measuring the macroscopic contraction of porous collagen-GAG matrices over time. We have identified the microscopic deformations developed by individual fibroblasts which lead to the observed macroscopic matrix contraction. Observation of live cells attached to the matrix revealed that matrix deformation occurred as a result of cell elongation. The time dependence of the increase in average fibroblast aspect ratio over time corresponded with macroscopic matrix contraction, further linking cell elongation and matrix contraction. The time dependence of average fibroblast aspect ratio and macroscopic matrix contraction was found to be the result of the stochastic nature of cell elongation initiation and of the time required for cells to reach a final morphology (2-4 h). The proposed micromechanics associated with observed buckling or bending of individual struts of the matrix by cells may, in part, explain the observation of a force plateau during macroscopic contraction. These findings indicate that the macroscopic matrix contraction measured immediately following cell attachment is related to the extracellular force necessary to support cell elongation, and that macroscopic time dependence is not directly related to microscopic deformation events.
The hierarchical response of human corneal collagen to load
Acta Biomaterialia
Fibrillar collagen in the human cornea is integral to its function as a transparent lens of precise curvature, and its arrangement is now well-characterised in the literature. While there has been considerable effort to incorporate fibrillar architecture into mechanical models of the cornea, the mechanical response of corneal collagen to small applied loads is not well understood. In this study the fibrillar and molecular response to tensile load was quantified using small and wide angle X-ray scattering (SAXS/WAXS), and digital image correlation (DIC) photography was used to calculate the local strain field that gave rise to the hierarchical changes. A molecular scattering model was used to calculate the tropocollagen tilt relative to the fibril axis and changes associated with applied strain. Changes were measured in the D-period, molecular tilt and the orientation and spacing of the fibrillar and molecular networks. These measurements were summarised into hierarchical deformation mechanisms, which were found to contribute at varying strains. The change in molecular tilt is indicative of a sub-fibrillar ''spring-like" deformation mechanism, which was found to account for most of the applied strain under physiological and near-physiological loads. This deformation mechanism may play an important functional role in tissues rich in fibrils of high helical tilt, such as skin and cartilage. Statement of Significance Collagen is the primary mediator of soft tissue biomechanics, and variations in its hierarchical structure convey the varying amounts of structural support necessary for organs to function normally. Here we have examined the structural response of corneal collagen to tensile load using X-rays to probe hierarchies ranging from molecular to fibrillar. We found a previously unreported deformation mechanism whereby molecules, which are helically arranged relative to the axis of their fibril, change in tilt akin to the manner in which a spring stretches. This ''spring-like" mechanism accounts for a significant portion of the applied deformation at low strains (<3%). These findings will inform the future design of collagen-based artificial corneas being developed to address worldwide shortages of corneal donor tissue.
Collagen-based cell migration models in vitro and in vivo
Seminars in Cell & Developmental Biology, 2009
Fibrillar collagen is the most abundant extracellular matrix (ECM) constituent which maintains the structure of most interstitial tissues and organs, including skin, gut, and breast. Density and spatial alignments of the three-dimensional (3D) collagen architecture define mechanical tissue properties, i.e. stiffness and porosity, which guide or oppose cell migration and positioning in different contexts, such as morphogenesis, regeneration, immune response, and cancer progression. To reproduce interstitial cell movement in vitro with high in vivo fidelity, 3D collagen lattices are being reconstituted from extracted collagen monomers, resulting in the re-assembly of a fibrillar meshwork of defined porosity and stiffness. With a focus on tumor invasion studies, we here evaluate different in vitro collagen-based cell invasion models, employing either pepsinized or non-pepsinized collagen extracts, and compare their structure to connective tissue in vivo, including mouse dermis and mammary gland, chick chorioallantoic membrane (CAM), and human dermis. Using confocal reflection and two-photon-excited second harmonic generation (SHG) microscopy, we here show that, depending on the collagen source, in vitro models yield homogeneous fibrillar texture with a quite narrow range of pore size variation, whereas all in vivo scaffolds comprise a range from low-to high-density fibrillar networks and heterogeneous pore sizes within the same tissue. Future in-depth comparison of structure and physical properties between 3D ECM-based models in vitro and in vivo are mandatory to better understand the mechanisms and limits of interstitial cell movements in distinct tissue environments.