Advanced Femtosecond Laser Lens Surgery (original) (raw)

Femtosecond laser-assisted cataract surgery compared with conventional cataract surgery

Clinical & Experimental Ophthalmology, 2012

T he femtosecond laser (FSL) is useful in ocular surgeries due to its ultrafast pulses in the range of 10-15 seconds and its decreased energy requirements for tissue destruction, allowing for reduced unintended destruction of surrounding tissues. 1,2 While FSLs were previously FDA-approved for use in lamellar corneal surgery, the modality was approved in 2010 for cataract surgery. There are three companies-OptiMedica (Santa Clara, CA), LenSx (recently acquired by Alcon, Fort Worth, TX), and LensAR (Winter Park, FL)-which will be discussed in this review. LensAR recently received 501(k) FDA approval for lens fragmentation and anterior capsulotomy. LenSx is now approved for lens fragmentation, anterior capsulotomy, and corneal incisions. OptiMedica is currently seeking FDA approval and is already available outside of the United States. Although there may be other laser platforms, this review will focus on these three companies due to their presence in published literature. Lasers have been utilized in cataract surgery since the 1970s, when Krasnov reported a laser modality for phacopuncture. 3 Subsequently in 1987, Peyman and Katoh focused an Erbium:YAG laser on the lens nucleus, inducing photoablation. 4 These efforts were harbingers of laser use in ocular surgery, which eventually led to investigations into FSL-assisted cataract surgery (FLACS). Methods to increase accuracy and precision in cataract surgery are being investigated because as lens implants become more advanced, patient expectations for near-perfect vision are increasing. These premium intraocular lenses (IOLs) also depend more on precise centration for optimal performance. 5-7 Accuracy standards for cataract surgery were set in the United Kingdom by Gale et al. in 2006 to reach ±0.50 diopter (D) for 55% of cases, and ±1.00 D for 85% of cases. 8 In comparison to these guidelines, Murphy et al. showed that with standard cataract surgery methods, 45% of patients were within the 0.50 D range, and 72% of patients were in the 1.00 D range. 9 As cataract surgery is the most common operation in the United

The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn?

Br J Ophthalmol, 2013

Femtosecond laser-assisted cataract surgery (FLACS) represents a potential paradigm shift in cataract surgery, but it is not without controversy. Advocates of the technology herald FLACS as a revolution that promises superior outcomes and an improved safety profile for patients. Conversely, detractors point to the large financial costs involved and claim that similar results are achievable with conventional small-incision phacoemulsification. This review provides a balanced and comprehensive account of the development of FLACS since its inception. It explains the physiology and mechanics underlying the technology, and critically reviews the outcomes and implications of initial studies. The benefits and limitations of using femtosecond laser accuracy to create corneal incisions, anterior capsulot-omy, and lens fragmentation are explored, with reference to the main platforms, which currently offer FLACS. Economic considerations are discussed, in addition to the practicalities associated with the implementation of FLACS in a healthcare setting. The influence on surgical training and skills is considered and possible future applications of the technology introduced. While in its infancy, FLACS sets out the exciting possibility of a new level of precision in cataract surgery. However, further work in the form of large scale, phase 3 randomised controlled trials are required to demonstrate whether its theoretical benefits are significant in practice and worthy of the necessary huge financial investment and system overhaul. Whether it gains widespread acceptance is likely to be influenced by a complex interplay of scientific and socio-economic factors in years to come.

Femtosecond laser-assisted cataract surgery

Femtosecond laser-assisted cataract surgery provides surgeons an exciting new option to potentially improve patient outcomes and safety. Over the past 2 years, 4 unique laser platforms have been introduced into the marketplace. The introduction of this new technology has been accompanied by a host of new clinical, logistical, and financial challenges for surgeons. This article describes the evolution of femtosecond laser technology for use in cataract surgery. It reviews the available laser platforms and discusses the necessary modifications in cataract surgery technique and the logistics of incorporating a femtosecond laser into one's practice.

Safety and surgical outcomes of femtosecond laser-assisted cataract surgery

2021

Results In this study, we have reported no cases of programming errors, and only one (2%) eye had incomplete capsulotomy that necessitated completion using capsulurhexis foreceps. Seven (14%) eyes had incomplete corneal incisions that were completed using a sharp keratome, and lens fragmentation was complete in all cases except only one (2%) case. Thirty four (68%) eyes showed postdocking conjunctival echymosis (Fig. 3), which is considered as a minor complication that necessitates only goodcounseling of the patients. Department of Ophthalmology, Minia

Femtosecond Laser-Assisted Cataract Surgery and Its Learning Curve

The Annual ASCRS and ASOA Symposium and Congress, 2014

Background: Cataract surgery after penetratingkeratoplasty (PKP) is often challenging due to changes in the integrity of the cornea caused by PKP. For example, corneal endothelial cell (CEC) loss and corneal edema commonly occur after traditional phacoemulsification cataract surgery in patients that previously had successful PKP. Recent studies have reported that femtosecond laser-assisted cataract surgery (FLACS) significantly reduces the need for ultrasound energy minimizing mechanical damage to the cornea and results in a reduction of CEC loss and corneal edema. Case presentation: We report a case in which FLACS was used in a patient with previous PKP. Conclusion: This case supports the suggestion that the use of the femtosecond laser improves the surgical outcome of cataract surgery after PKP. This improvement may be result of the precise incision, controlled capsulorhexis, and reduced lens fragmentation experienced with the femtosecond laser which helps to reduce potential complications of cataract surgery after PKP.

Learning curve of femtosecond laser-assisted cataract surgery: Experience of surgeons new to femtosecond laser platform

Indian Journal of Ophthalmology

The purpose of this study is to assess the learning curve in the initial 100 cases of cataract surgery performed using femtosecond laser-assisted cataract surgery (FLACS) by experienced cataract surgeons without prior experience in femtosecond laser platform. Methods: This study was conducted at tertiary care eye hospital, South India. This was a prospective interventional study. The first 100 consecutive eyes undergoing FLACS were studied to understand docking time, number of docking attempts, problems encountered during docking, and complications attributable to docking. Phacoemulsification performed after femtosecond laser was also studied for complications, need for additional instrumentation, and total time required for surgery. Comparison was also made between two operating surgeons. Results: Successful docking was recorded in 70% eyes at the first attempt. Mean time taken for successful docking was 9.3 ± 6.4 min (median = 6 min, interquartile range (IQR) = 5-10 min, range = 4-35 min). When surgeries were divided into quartiles, docking time reduced significantly from 16.2 ± 7.9 min in the first quartile to 6.2 ± 2.7 min in the fourth quartile (P < 0.001). Phacoemulsification postdocking required 12.9 ± 6.2 min (median = 10 min, IQR = 9-17.5 min). Six eyes showed anterior capsular tags, one had radial extension of capsulorhexis, and two eyes showed pupillary miosis after femtosecond laser application. At 6 weeks, 79% eyes attained uncorrected vision of 20/20, and all eyes had best-corrected vision of 20/20. Conclusion: Approximately 25-30 cases were required before obtaining reproducible results with FLACS, irrespective of cataract surgical experience, suggesting that training programs must offer a minimum 25 surgeries. Very few complications occurred during the learning curve, making it patient friendly.

Femtosecond laser-assisted cataract surgeries reported to the European Registry of Quality Outcomes for Cataract and Refractive Surgery: Baseline characteristics, surgical procedure, and outcomes

Journal of cataract and refractive surgery, 2017

To describe a large cohort of femtosecond laser-assisted cataract surgeries in terms of baseline characteristics and the related outcomes. Eighteen cataract surgery clinics in 9 European countries and Australia. Prospective multicenter case series. Data on consecutive eyes having femtosecond laser-assisted cataract surgery in the participating clinics were entered in the European Registry of Quality Outcomes for Cataract and Refractive Surgery (EUREQUO). A trained registry manager in each clinic was responsible for valid reporting to the EUREQUO. Demographics, preoperative corrected distance visual acuity (CDVA), risk factors, type of surgery, type of intraocular lens, visual outcomes, refractive outcomes, and complications were reported. Complete data were available for 3379 cases. The mean age was 64.4 years ± 10.9 (SD) and 57.8% (95% confidence interval [CI], 56.1-59.5) of the patients were women. A surgical complication was reported in 2.9% of all cases (95% CI, 2.4-3.5). The me...

Femtosecond cataract surgery: A review of current literature and the experience from an initial installation.

Cataract surgery remains the most widely performed intraocular procedure throughout the world. Safety and accuracy of the procedure are paramount and techniques should remain under constant review. Recently, the introduction of the femtosecond laser to assist cataract surgery has provided ophthalmologists with an exciting tool that may further improve outcomes. We review the existing literature and discuss the installation and initial experience of a femtosecond laser into our practice.