Maximum power point tracking based on improved spotted hyena optimizer for solar photovoltaic (original) (raw)
Related papers
A modified particle swarm optimization algorithm to enhance MPPT in the PV array
International Journal of Electrical and Computer Engineering (IJECE), 2020
Due to the growing demand for electrical power, the researchers are trying to fulfill this demand by considering different ways of renewable energy resource as existing energy resources failed to do so. The solar energy from the sun is freely available, and by using photovoltaic (PV) cell power can be generated. However, it depends on rays fall on the PV cell, climatic condition. Thus, to enhance the efficiency of the photovoltaic (PV) systems, maximum power point tracking (MPPT) of the solar arrays is needed. The output of solar arrays mainly depends on solar irradiance and temperature. The mismatch phenomenon takes place due to partial shade, and it causes to the power output, which brings the incorrect operation of traditional MPP tracker. In this shaded condition, PV array exhibits multiple extreme points. In general, under this scenario, the MPPT approaches fail to judge the MPP, and it leads to low efficiency. The conventional approaches of PSO based algorithms can able to track the MPP under shading condition. However, the optimization process leads to issues in tracking speed. Thus, there a need for an efficient MPPT system which can track MPPT effectively in shaded condition? Hence, the proposed manuscript presents a modified particle swarm optimization (PSO) algorithm is introduced to enhance the tracking speed as well as performance. The outcomes of the proposed system are compared with the traditional PSO system and are found that the tracking speed of MPP, accuracy, and efficiency is improved.
Energy, 2020
The characteristic of the photovoltaic (PV) system during partial shading condition comprises of one global peak and multiple local peaks. It is, therefore, very difficult to track maximum power from the PV arrays. Traditional maximum power point (MPP) tracking (MPPT) algorithms are commonly limited to uniform irradiance condition. In this manuscript, the problem under study is the tracking of maximum power from a PV array in real-time system. Consequently, this paper proposes an improved chaotic PSO (CPSO) (ICPSO) for extracting maximum power from the PV array under various environmental conditions. In the algorithm, chaotic mutation is engrafted to overcome trapping of normal PSO into local MPPs. Moreover, tracking time, number of iteration and efficiency are also improved considerably by the proposed algorithm. ICPSO based simulation results under four different irradiance patterns for each PV array configuration (such as 3S1P and 4S2P) are verified against PSO, improved PSO, CPSO, cuckoo search, and perturb and observed algorithm. The obtained results also ensure that the tracking efficiency of the proposed technique is better than the other approaches in most of the cases, which leads better outlook to use this technique in the control block for searching the global MPP of the PV setup.
A Novel MPPT Design for a Partially Shaded PV System Using Spotted Hyena Optimization Algorithm
Engineering, Technology & Applied Science Research, 2021
Partial shading is a common problem in photovoltaic (PV) systems, known for its difficulty. Numerous attempts have been conducted to mitigate this problem. Some of these efforts deploy metaheuristic optimization with a view to tracking the multiple-peak P-V curve in a partial shading PV system. Hence, this paper proposes a novel metaheuristic algorithm to track the maximum power point of PV systems using the Spotted Hyena Optimization (SHO) algorithm. When evaluated, the SHO algorithm proved to be very fast, robust, and accurate in standard conditions, Partial Shading Conditions (PSCs), and irradiance variations. Also, the results reveal a remarkable improvement in the performance when we compare the SHO algorithm with the Grey Wolf Optimization (GWO) algorithm and the Perturb and Observe (P&O) algorithm.
Main objective of this paper is to develop an intelligent and efficient Maximum Power Point Tracking (MPPT) technique. Most recently introduced of intelligent based algorithm Cuckoo search algorithm has been used in this study to develop a novel technique to track the Maximum Power Point (MPP) of a solar cell module. The performances of this algorithm has been compared with other evolutionary soft computing techniques like ABC, FA and PSO. Simulations were done in MATLAB/SIMULINK environment and simulation results show that proposed approach can obtain MPP to a good precision under different solar irradiance and environmental temperatures.
Application of mutant particle swarm optimization for MPPT in photovoltaic system
Indonesian Journal of Electrical Engineering and Computer Science, 2020
The P –V characteristic of a photovoltaic system (PVs) is non-linear and de-pends entirely on the extreme environmental condition, thus a large amount PV energy is lost in the environment. To enhance the operating efficiency of the PVs, a maximum power point tracking (MPPT) controller is normally equipped in the system. This paper proposes a new mutant particle swarm optimization (MPSO) algorithm for tracking the maximum power point (MPP) in the PVs. The MPSO-based MPPT algorithm not only surmounts the steady-state oscillation (SSO) around the MPP, but also tracks accurately the optimum power under different varying environmental conditions. To demonstrate the effectiveness of the proposed method, MATLAB simulations are implemented in three challenging scenarios to the PV system, including changing irradiation, load variation and partial shading condition (PSC). Furthermore, the obtained results are compared to some of the con-ventional MPPT algorithms, such as incremental conductan...
International Journal of Electrical and Computer Engineering (IJECE), 2022
A new maximum power point tracking (MPPT) technique based on the bioinspired metaheuristic algorithm for photovoltaic system (PV system) is proposed, namely tunicate swarm algorithm-based MPPT (TSA-MPPT). The proposed algorithm is implemented on the PV system with five PV modules arranged in series and integrated with DC-DC buck converter. Then, the PV system is tested in a simulation using PowerSim (PSIM) software. TSA-MPPT is tested under varying irradiation conditions both uniform irradiation and non-uniform irradiation. Furthermore, to evaluate the performance, TSA-MPPT is compared with perturb & observe-based MPPT (P&O-MPPT) and particle swarm optimization-based MPPT (PSO-MPPT). The TSA-MPPT has an accuracy of 99% and has a reasonably practical capability compared to the MPPT technique, which already existed before.
Automatika, 2020
The photovoltaic (PV) systems must work at the maximum power point (MPP) to derive the highest possible power with the higher performance during a change in operating conditions. The primary objective is to implement a novel hybrid tracking algorithm to extract the maximum output power from the solar PV panel or array under partial shading conditions (PSCs). This hybrid MPP tracking algorithm is based on the salp swarm algorithm (SSA), which finds the initial global peak (GP) operating point and is followed by the perturb and observation (P&O) algorithm in the last stage to realize a faster convergence rate. Thus, the computational burden met by the conventional methods such as standalone P&O, hybrid grey-wolf-optimization (HGWO), and hybrid whale-optimization algorithm (HWOA) algorithm reported in the literature is overcome by the proposed hybrid SSA algorithm called HSSA. The P&O algorithm searches the MPP in the projected search space by the SSA algorithm. The proposed hybrid algorithm is simulated using MATLAB/Simulink simulation tool to validate the effectiveness of tracking the MPP. The hybrid SSA is compared with the standalone P&O, hybrid WOA, and hybrid GWO, and from the simulation results, it is proved that the hybrid tracking algorithm exhibits a high tracking performance.
Comparison between P and SSO techniques based MPPT algorithm for photovoltaic systems
International Journal of Electrical and Computer Engineering (IJECE), 2022
Solar photovoltaic (SPV) systems are a renewable source of energy that are environmentally friendly and recyclable nature. When the solar panel is connected directly to the load, the power delivered to the load is not the optimal power. It is therefore important to obtain maximum power from SPV systems for enhancing efficiency. Various maximum power point tracking (MPPT) techniques of SPV systems were proposed. Traditional MPPT techniques are commonly limited to uniform weather conditions. This paper presents a study of MPPT for photovoltaic (PV) systems. The study includes a discussion of different MPPT techniques and performs comparison for the performance of the two MPPT techniques, the P&O algorithm, and salp swarm optimization (SSO) algorithm. MATLAB simulations are performed under step changes in irradiation. The results of SSO show that the search time of maximum power point (MPP) is significantly decreased and the MPP is obtained in the shortest time with high accuracy and m...
Meta-Heuristic Optimization Techniques Used for Maximum Power Point Tracking in Solar PV System
Electronics, 2021
A critical advancement in solar photovoltaic (PV) establishment has led to robust acceleration towards the evolution of new MPPT techniques. The sun-oriented PV framework has a non-linear characteristic in varying climatic conditions, which considerably impact the PV framework yield. Furthermore, the partial shading condition (PSC) causes major problems, such as a drop in the output power yield and multiple peaks in the P–V attribute. Hence, following the global maximum power point (GMPP) under PSC is a demanding problem. Subsequently, different maximum power point tracking (MPPT) strategies have been utilized to improve the yield of a PV framework. However, the disarray lies in choosing the best MPPT technique from the wide algorithms for a particular purpose. Each algorithm has its benefits and drawbacks. Hence, there is a fundamental need for an appropriate audit of the MPPT strategies from time to time. This article presents new works done in the global power point tracking (GMP...