Using In Silico Bioinformatics Algorithms for the Accurate Prediction of the Impact of Spike Protein Mutations on the Pathogenicity, Stability, and Functionality of the SARS-CoV-2 Virus and Analysis of Potential Therapeutic Targets (original) (raw)

Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: molecular docking and simulation approach

VirusDisease, 2021

The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is spreading, as the causative pathogen of coronavirus disease-19 (COVID-19). It has infected more than 1.65 billion people all over the world since it was discovered and reported 3.43 million deaths by mid of May 2021. SARS-CoV-2 enters the host cell by binding to viral surface glycoprotein (S protein) with human ACE2 (angiotensin-converting enzyme2). Spike protein (contains S1 and S2 sub-domains) molecular interaction with the host cells is considered as a major step in the viral entry and disease initiation and progression and this identifies spike protein as a promising therapeutic target against antiviral drugs. Currently, there are no efficient antiviral drugs for the prevention of COVID-19 infection. In this study, we have analyzed global 8719 spike protein sequences from patients infected with SAR-CoV-2. These SAR-CoV-2 genome sequences were downloaded from the GISAID database. By using an open reading frame (ORF) tool we have identified the spike protein sequence. With these, all spike protein amino acid sequences are subjected to multiple sequence alignment (MSA) with Wuhan strain spike protein sequence as a query sequence, and it shows all SAR-CoV strain spike proteins are 99.8% identical. In the mutational analysis, we found 639 mutations in the spike protein sequence of SARS-CoV-2 and identified/highlighted 20 common mutations L5F,

In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2

Scientific Reports, 2021

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a newly-discovered coronavirus and responsible for the spread of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infected millions of people in the world and immediately became a pandemic in March 2020. SARS-CoV-2 belongs to the beta-coronavirus genus of the large family of Coronaviridae. It is now known that its surface spike glycoprotein binds to the angiotensin-converting enzyme-2 (ACE2), which is expressed on the lung epithelial cells, mediates the fusion of the cellular and viral membranes, and facilitates the entry of viral genome to the host cell. Therefore, blocking the virus-cell interaction could be a potential target for the prevention of viral infection. The binding of SARS-CoV-2 to ACE2 is a protein–protein interaction, and so, analyzing the structure of the spike glycoprotein of SARS-CoV-2 and its underlying mechanism to bind the host cell receptor would be useful for the management and treatment of COVID-...

Bioinformatics analysis of the differences in the binding profile of the wild-type and mutants of the SARS-CoV-2 spike protein variants with the ACE2 receptor

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Reports of new variants that potentially increase virulence and viral transmission, as well as reduce the efficacy of available vaccines, have recently emerged. In this study, we computationally analyzed the N439K, S477 N, and T478K variants for their ability to bind Angiotensin-converting enzyme 2 (ACE2). We used the protein-protein docking approach to explore whether the three variants displayed a higher binding affinity to the ACE2 receptor than the wild type. We found that these variants alter the hydrogen bonding network and the cluster of interactions. Additional salt bridges, hydrogen bonds, and a high number of non-bonded contacts (i.e., non-bonded interactions between atoms in the same molecule and those in other molecules) were observed only in the mutant complexes, allowing efficient binding to the ACE2 receptor. Furthermore, we used a 2.0-μs allatoms simulation approach to detect differences in the structural dynamic features of the resulting protein complexes. Our findings revealed that the mutant complexes possessed stable dynamics, consistent with the global trend of mutations yielding variants with improved stability and enhanced affinity. Binding energy calculations based on molecular mechanics/generalized Born surface area (MM/GBSA) further revealed that electrostatic interactions principally increased net binding energies. The stability and binding energies of N439K, S477 N, and T478K variants were enhanced compared to the wild-type-ACE2 complex. The net binding energy of the systems was − 31.86 kcal/mol for the wild-type-ACE2 complex, − 67.85 kcal/mol for N439K, − 69.82 kcal/ mol for S477 N, and − 69.64 kcal/mol for T478K. The current study provides a basis for exploring the enhanced binding abilities and structural features of SARS-CoV-2 variants to design novel therapeutics against the virus.

Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex

ACS Nano

The recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable in silico structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition. In particular, residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor-binding domain are determined as true hot spots, contributing to shaping and determining the stability of the relevant protein−protein interface. Overall, these results could be used to estimate the binding affinity of the viral protein to different allelic variants of ACE2 receptors discovered in COVID-19 patients and for the effective structure-based design and development of neutralizing antibodies, vaccines, and protein/protein inhibitors against this terrible new coronavirus.

Uncovering the impact of SARS-CoV2 spike protein variants on human receptors: A molecular dynamics docking and simulation approach

2023

Background: The SARS-CoV-2 pandemic, caused by the novel coronavirus, has posed a significant global health threat since its emergence in late 2019. The World Health Organization declared the outbreak a pandemic on March 11, 2020, due to its rapid global spread and impact on public health. New variants have raised concerns about their potential impact on the transmission of the virus and the effectiveness of current diagnostic tools, treatments, and vaccines. This study aims to investigate the effect of new variants in Pakistani virus strains on human receptors, specifically ACE2 and NRP1. In-silico analysis provides a powerful tool to analyze the potential impact of new variants on protein structure, function, and interactions. Objectives: The SARS-CoV-2 virus is evolving quickly. After being exposed in Wuhan, SARS-CoV-2 underwent numerous mutations, leading to several variants' emergence. These variants stabilize the interaction of spike protein with human receptors ACE2 and NRP1. The study aims to check the molecular effect of these variants on human receptors using the in-silico approach. Material and methods: We use in-silico mutational tools to analyze new variants in SARS-CoV-2 and to check the molecular interaction of spike protein with human receptors (ACE2 and NRP1). Genomic sequences of 41 SARS-CoV-2 strains were sequenced using Ion Torrent (NGS) and submitted to the GISAID database. Spike protein of SARS-CoV-2 sequence trimmed and translated into a protein sequence using ExPasy. We used multiple sequence alignments to check for variants in the spike protein of strains. We utilized mutation tools such as Mupro, SIFT, SNAP2, and Mutpred2.3D structures of SARS-CoV-2 spike proteins (wild and mutated) to analyze further the mutations, ACE2 and NRP1 modelled by the ITASSER protein modelling server. Interactions of spike proteins (wild and mutant) analyzed by MD Docking, Simulation, and MMGBSA Results: Variants I210T, V213G, S371F, S373P, T478K, F486V, Y505H, and D796Y were identified in SARS-CoV-2 Pakistani strains' spike protein. Variant Y505H were found to affect protein function. MD Docking, MMGBSA and MD simulation revealed that these variants increased spike protein's binding affinity with human receptors (ACE2 and NRP1). MD simulation revealed that mutated spike protein stabilized earlier than wild when interacting with ACE2 after 40 ns and interaction with NRP1 stabilized after 30 ns for mutated spike protein compared to wild. Conclusion: These variants in Pakistani strains of SARS-CoV-2 are increasing the stability of spike protein with human receptors. These findings provide insight into how the SARS-CoV-2 virus evolves and adapts to human hosts. This information may help develop strategies to control the virus's spread and develop effective treatments and vaccines in the future.

Identification of a Potent Inhibitor Targeting the Spike Protein of Pandemic Human Coronavirus, SARS-CoV-2 by Computational Methods

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an emerging new viral pathogen that causes severe respiratory disease. SARS-CoV-2 is responsible for an outbreak of COVID-19 pandemic worldwide. As there are no confirmed antiviral drugs or vaccines currently available for the treatment of COVID-19, discovering potent inhibitors or vaccines are urgently required for the benefit of humanity. The glycosylated Spike protein (S-protein) directly interacts with human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of S-protein. As the S-protein is exposed to the surface and is essential for entry into the host, the S-protein can be considered as a first-line therapeutic target for antiviral therapy and vaccine development. In-silico screening, docking and molecular dynamics simulation studies were performed to identify repurposing drugs using DrugBank and PubChem library against the RBD of S-protein. The study identified a laxative dru...

Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction

BMC Molecular and Cell Biology, 2022

Background SARS-CoV-2, the causative agent of COVID-19 pandemic is a RNA virus prone to mutations. Formation of a stable binding interface between the Receptor Binding Domain (RBD) of SARS-CoV-2 Spike (S) protein and Angiotensin-Converting Enzyme 2 (ACE2) of host is pivotal for viral entry. RBD has been shown to mutate frequently during pandemic. Although, a few mutations in RBD exhibit enhanced transmission rates leading to rise of new variants of concern, most RBD mutations show sustained ACE2 binding and virus infectivity. Yet, how all these mutations make the binding interface constantly favourable for virus remain enigmatic. This study aims to delineate molecular rearrangements in the binding interface of SARS-CoV-2 RBD mutants. Results Here, we have generated a mutational and structural landscape of SARS-CoV-2 RBD in first six months of the pandemic. We analyzed 31,403 SARS-CoV-2 genomes randomly across the globe, and identified 444 non-synonymous mutations in RBD that cause 4...

Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study

Journal of Biomolecular Structure and Dynamics, 2023

The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D). The study is conducted on four variants of concern (VOC) to differentiate and identify common virus behaviours. An assessment of the structural stability of various variants indicates slight changes attributed to mutations, yet overall structural integrity remains preserved. Our findings reveal the spike protein's ability to bind with TLR4 and TLR2, prompting immune activation. In addition, our in-silico results reveal almost similar docking scores and therefore affinity for both ACE2-spike and TLR4-spike complexes. We demonstrate that even minor changes due to mutations in all variants, surfactant A and D proteins can function as inhibitors against the spike in all variants, hindering the ACE2-RBD interaction.

Evaluation of the Effect of D614g, N501y and S477n Mutation in Sars-Cov-2 through Computational Approach

2020

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an outbreak of COVID-19 disease in humans with the aid of spike protein. It consists of a receptor-binding domain (RBD) that recognizes and binds to the host receptor angiotensin-converting enzyme 2 (ACE2). The aim of this study was to examine the mutational effect of spike protein on the sequence through an interaction study of the mutant spike protein and the human ACE2 protein at the structural level. A total of 17,227 spike proteins from Asia, Africa, Europe, Oceania, South America, and North America were compared to the Wuhan spike protein reference sequence (Wuhan-Hu-1). The structural and stability implications of D614G, N501Y, and S477N mutations were evaluated. The binding affinity between mutated RBD and human ACE2 protein was also studied. The D614G mutation may have originated in Germany, Europe based on the date of the first sample collection report. It is now widely circulated all over the world with m...

Mutational analysis of the spike protein of SARS-COV-2 isolates revealed atomistic features responsible for higher binding and infectivity

Frontiers in Cell and Developmental Biology

Introduction: The perpetual appearance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), and its new variants devastated the public health and social fabric around the world. Understanding the genomic patterns and connecting them to phenotypic attributes is of great interest to devise a treatment strategy to control this pandemic.Materials and Methods: In this regard, computational methods to understand the evolution, dynamics and mutational spectrum of SARS-CoV-2 and its new variants are significantly important. Thus, herein, we used computational methods to screen the genomes of SARS-CoV-2 isolated from Pakistan and connect them to the phenotypic attributes of spike protein; we used stability-function correlation methods, protein-protein docking, and molecular dynamics simulation.Results: Using the Global initiative on sharing all influenza data (GISAID) a total of 21 unique mutations were identified, among which five were reported as stabilizing while 16 were desta...