Increased Scaffolding and Inquiry in an Introductory Biology Lab Enhance Experimental Design Skills and Sense of Scientific Ability (original) (raw)
Related papers
Journal of Microbiology & Biology Education, 2017
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both bas...
Inquiry-Based Laboratory Course Improves Students’ Ability to Design Experiments and Interpret Data
Advances in Physiology Education, 2003
We redesigned our intermediate-level organismal physiology laboratory course to center on student-designed experiments in plant and human physiology. Our primary goals were to improve the ability of students to design experiments and analyze data. We assessed these abilities at the beginning and end of the semester by giving students an evaluation tool consisting of an experimental scenario, data, and four questions of increasing complexity. To control for nontreatment influences, the improvement scores (final minus initial score for each question) of students taking both the laboratory and the companion lecture course were compared with those of students taking the lecture course only. The laboratory + lecture group improved more than the lecture-only group for the most challenging question. This evidence suggests that our inquiry-based curriculum is achieving its primary goals. The evaluation tool that we developed may be useful to others interested in measuring experimental analy...
Development of a Tool to Assess Interrelated Experimental Design in Introductory Biology
Journal of Microbiology & Biology Education, 2018
Designing experiments and applying the process of science are core competencies for many introductory courses and course-based undergraduate research experiences (CUREs). However, experimental design is a complex process that challenges many introductory students. We describe the development of a tool to assess interrelated experimental design (TIED) in an introductory biology lab course. We describe the interrater reliability of the tool, its effectiveness in detecting variability and growth in experimental-design skills, and its adaptability for use in various contexts. The final tool contained five components, each with multiple criteria in the form of a checklist such that a high-quality response—in which students align the different components of their experimental design—satisfies all criteria. The tool showed excellent interrater reliability and captured the full range of introductory-student skill levels, with few students hitting the assessment ceiling or floor. The scoring...
CBE- Life Sciences Education, 2018
Providing opportunities for science, technology, engineering, and mathematics undergraduates to engage in authentic scientific practices is likely to influence their view of science and may impact their decision to persist through graduation. Laboratory courses provide a natural place to introduce students to scientific practices, but existing curricula often miss this opportunity by focusing on confirming science content rather than exploring authentic questions. Integrating authentic science within laboratory courses is particularly challenging at high-enrollment institutions and community colleges, where access to research-active faculty may be limiting. The Authentic Inquiry through Modeling in Biology (AIM-Bio) curriculum presented here engages students in authentic scientific practices through iterative cycles of model generation, testing, and revision. AIM-Bio university and community college students demonstrated their ability to propose diverse models for biological phenomena, formulate and address hypotheses by designing and conducting experiments, and collaborate with classmates to revise models based on experimental data. Assessments demonstrated that AIM-Bio students had an enhanced sense of project ownership and greater identification as scientists compared with students in existing laboratory courses. AIM-Bio students also experienced measurable gains in their nature of science understanding and skills for doing science. Our results suggest AIM-Bio as a potential alternative to more resource-intensive curricula with similar outcomes.
Puttick et al 2015 Study of lit on lab-based instruction in biology.pdf
AbstrAct We analyzed the practitioner literature on lab-based instruction in biology in The American Biology Teacher between 2007 and 2012. We investigated what laboratory learning looks like in biology classrooms, what topics are addressed, what instructional methods and activities are described, and what is being learned about student outcomes. The practitioner literature reveals a focus on novel and innovative labs, and gaps in some biology topics. There is little description of student learning, but motivation and engagement are a primary concern of authors. There is little evidence of students addressing the nature of science in laboratories, and too few opportunities for authentic exploration of phenomena. We suggest that biology instruction can be strengthened by more rigorous practitioner research through increased professional collaboration between teachers and education researchers, increased focus on the synergy between content and teaching practice, and more rigor in reporting student outcomes.
How Students Think about Experimental Design: Novel Conceptions Revealed by in-Class Activities
BioScience, 2014
Experimental design is a fundamental skill for scientists, but it is often not explicitly taught in large introductory biology classes. We have designed two pencil-and-paper in-class activities to increase student understanding of experimental design: an analyze activity, in which students are asked to evaluate data, and a design activity, in which students are asked to propose a novel experiment. We found that students who completed the design activity but not the analyze activity performed significantly better on the Expanded Experimental Design Ability Tool (E-EDAT) than did students who attended a didactic lecture about experimental design. By using grounded theory on student responses on the in-class activities, we have identified a novel set of accurate and inaccurate conceptions focused on two aspects of experimental design: sample size and the repetition of experiments. These findings can be used to help guide science majors through mastering the fundamental skill of designing rigorous experiments.
A Study of the Literature on Lab-Based Instruction in Biology
The American Biology Teacher, 2015
The American Biology Teacher between 2007 and 2012. We investigated what laboratory learning looks like in biology classrooms, what topics are addressed, what instructional methods and activities are described, and what is being learned about student outcomes. The practitioner literature reveals a focus on novel and innovative labs, and gaps in some biology topics. There is little description of student learning, but motivation and engagement are a primary concern of authors. There is little evidence of students addressing the nature of science in laboratories, and too few opportunities for authentic exploration of phenomena. We suggest that biology instruction can be strengthened by more rigorous practitioner research through increased professional collaboration between teachers and education researchers, increased focus on the synergy between content and teaching practice, and more rigor in reporting student outcomes. -rater reliability was 87%. Where disagreements occurred, coders discussed the differences and established an agreed coding.
Transforming Laboratory Education in the Life Sciences
Microbe Magazine, 2016
Throughout college, students encounter experiences that influence their decisions to continue or leave their intended science, technology, engineering, and math (STEM) majors. All STEM faculty share in a responsibility to encourage undergraduates to persist in these studies. Evidence continues to support active learning as an equitable teaching practice that benefıts diverse student populations, including women and underrepresented minority students most at risk for leaving STEM. The hope is that more STEM instructors will move away from the traditional lecture format as the primary mode of teaching undergraduates and that institutional leaders will reward those faculty who use inclusive, student-centered teaching practices effectively.
Journal of the Scholarship of Teaching and Learning, 2020
The advantages of active learning approaches have prompted national recommendations for the development of inquiry-based laboratories to replace traditional laboratory classes. However, there is little consensus for the most-effective implementation strategies. Frequently, a single inquiry-based exercise is incorporated at the end of a traditional course and students have little opportunity to repeat the experience before moving on to new courses. To test whether multiple-rounds of inquiry would be beneficial, we incorporated three rounds of inquiry-based experiments during a redesign of a traditional upper-level undergraduate developmental biology laboratory class. After the second and third round of inquiry, students gave slideshow presentations of their projects and received peer and instructor feedback. We then designed and validated a scoring rubric to assess student use of scientific skills. Substantial improvements were observed in five of seven categories of scientific skill...