Influence of the Phase Transformation Behaviour on the Microstructure and Mechanical Properties of a 4.5 wt.-% Mn Q Steel* (original) (raw)

Abstract

Kurzfassung "Quenching and Partitioning" (Q&P) steels have a microstructure consisting of a tempered martensitic matrix with austenite islands, which can be stabilized to room temperature due to the C partitioning from martensite to the remaining austenite. This heat-treatment is a novel approach for producing ultra-high strength and good formable steels. In the present work the impact of the Q&P processing parameters on the phase transformation behavior and mechanical properties of a 4.5 wt.% Mn steel was investigated. Using dilatometry the influence of the quenching temperature (T Q) on the amount of martensite and the kinetics of the bainitic transformation was thoroughly studied. The microstructure was characterized by means of light optical and scanning electron microscopy. The amount of retained austenite was determined using the saturation magnetization measurement. In order to obtain the mechanical properties hardness measurements according to Vickers were performed. Furthermore, using tensile tests the Q&P concept was compared to the Quenching and Tempering (Q&T) process in terms of strength-ductility performance. n

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (39)

  1. Kwon, O.; Lee, K.; Kim, G.; Chin, K.: New trends in advanced high strength steel - developments for automotive application. Mater. Sci. Forum 638-642 (2010), pp. 136-141, DOI:10.4028/www.scientific.net/MSF.638-642.136
  2. Spenger, F.; Hebesberger, T.; Pichler, A.; Krempaszky, C.; Werner, E.; Doppler, C.: AHSS steel grades: strain hardening and damage as material design criteria. Int. Conf. on New Developments in AHSS, 2008, Orlando, USA, pp. 39-49
  3. Jacques, P.; Petein, A.; Harlet, P.: Improvement of mechanical properties through concurrent deformation and transformation: new steels for the 21 st century. Proc. Int. Conf. on TRIP-aided high strength ferrous alloys, 2002, Ghent, Belgium, pp. 281-285
  4. Hashimoto, K.; Yamasaki, M.; Fujimura, K.; Matsui, T.; Izumiya, K.: Global CO 2 recycling -novel materials and prospect for prevention of global warming and abundant energy supply. Mater. Sci. Eng. A 267 (1999) 2, pp. 200-206, DOI:10.1016/S0921-5093(99)00092-1
  5. Zaefferer, S.; Ohlert, J.; Bleck, W.: A study of microstructure, transformation me- chanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 52 (2004), pp. 2765-2778, DOI:10.1016/ j.actamat.2004.02.044
  6. Matlock, D.; Speer, J.; De Moor, E.; Gibbs, P.: Recent developments in advanced high strength steels for automotive applications: an overview. JESTECH 15 (2012), pp. 1-12
  7. Kuziak, R.; Kawalla, R.; Waengler, S.: Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering VIII, 2 (2008), pp. 103-117, DOI:10.1016/S1644-9665(12)60197-6
  8. Billur, E.; Altan, T.; Dykeman, J.: Three generations of advanced high-strength steels for automotive applications, Part I. Stamp. J., 2013, pp. 16-17
  9. De Cooman, B. C.; Chin, K.; Kim, J.: High Mn TWIP steels for automotive applica- tions. Chapter 6 in: New trends and developments in automotive system enginee- ring;
  10. M. Chiaberge (ed.), DOI:10.5772/14086
  11. Steineder, K.; Krizan, D.; Schneider, R.; Béal, C.; Sommitsch, C.: On the micros- tructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater. 139 (2017), pp. 39-50, DOI:10.1016/j.actamat. 2017.07.056
  12. Steineder, K.; Schneider, R.; Krizan, D.; Béal, C.; Sommitsch, C.: Comparative Inves- tigation of Phase Transformation Behavior as a Function of Annealing Tempera- ture and Cooling Rate of Two Medium-Mn Steels. Steel Res. Int. 86 (2015), pp. 1179-1186, DOI:10.1002/srin.201400551
  13. De Cooman, B. C.; Speer, J.: Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications. Steel Res. Int. 77 (2006), pp. 634-640, DOI:10.1002/srin.200606441
  14. Speer, J.; Matlock, D.; De Cooman, B. C.; Schroth, J.: Carbon partitioning into aus- tenite after martensite transformation. Acta Mater. 51 (2003), pp. 2611-2622, DOI:10.1016/S1359-6454(03)00059-4
  15. Edmonds, D.; He, K.; Rizzo, F.; De Cooman, B. C.; Matlock, D.; Speer, J.: Quenching and partitioning martensite -A novel steel heat treatment. Mater. Sci. Eng. A 438- 440 (2006), pp. 25-34, DOI:10.1007/s13632-013-0082-8
  16. Arlazarov, A.; Gouné, M.; Bouaziz, O.; Hazotte, A.; Petitgand, G.; Barges, P.: Evolu- tion of microstrucutre and mechanical properties of medium Mn steels during double annealing. Mater. Sci. Eng. A 542 (2012), pp. 31-39, DOI:10.1016/ j.msea.2012.02.024
  17. Seo, E.; Cho, L.; De Cooman, B. C.: Application of quenching and partitioning pro- cessing to medium Mn steel. Metall. Mater. Trans. A 46 (2015) 1, pp. 27-31, DOI:10.1007/s11661-014-2657-7
  18. Seo, E.; Cho, L.; Estrin, Y.; De Cooman, B. C.: Microstructure-mechanical proper- ties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 113 (2016), pp. 124-130, DOI:10.1016/j.actamat.2016.04.048
  19. Clarke, A.; Speer, J.; Miller, M.; Hackenberg, R.; Edmonds, D.; Matlock, D.; Rizzo, F.; Clarke, K.; De Moor, E.: Carbon partitioning to austenite from martensite or baini- te during the quench and partition (Q&P) process: A critical assessment. Acta Mater. 56 (2008), pp. 16-22, DOI:10.1016/j.actamat.2007.08.051
  20. Kim, D.; Speer, J.; De Cooman, B. C.: Isothermal transformation of a CMnSi steel below the MS temperature. Metall. Mater. Trans. A 42a (2011), pp. 1575-1585, DOI:10.1007/s11661-010-0557-z
  21. Van Bohemen, S.; Santofimia, M.; Sietsma, J.: Experimental evidence for bainite formation below MS in Fe-0.66C. Scr. Mater. 58 (2009), pp. 488-491, DOI:10.1016/ j.scriptamat.2007.10.045
  22. Kaar, S.; Schneider, R.; Krizan, D.; Béal, C.; Sommitsch, C.: Influence of the quenching and partitioning process on the isothermal bainitic transformation kinetics in a lean medium manganese steel. Proc. 25 th Congr. of IFHTSE, 2018, Xian, China, p. 48
  23. Koistinen, D.; Marburger, R.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7 (1959), pp. 59-60, DOI:10.1016/0001-6160(59)90170-1
  24. Bhadeshia, H. K. D. H.; Honeycombe, R.: Steels -Microstructure and properties;
  25. rd ed. Butterworht-Heinemann, Oxford, UK, 2006. -ISBN 978-0-750-68084-4
  26. Speer, J.; Streicher, A.; Matlock, D.; Rizzo, F.: Quenching and partitioning: a funda- mentally new process to create high strength TRIP sheet microstructures. Sym- pos. Austenite formation and decomposition, 2003, Chicago, USA, pp. 505-522
  27. Bhadeshia, H. K. D. H.: The bainite transformation in a silicon steel. Metall. Trans. A 10 (1979) 7, pp. 895-907
  28. Garcia-Mateo, C.; Caballero, F.; Bhadeshia, H. K. D. H.: Acceleration of low-temperature bainite. ISIJ Int. 43 (2003) 11, pp. 1821-1825, DOI:10.2355/isijinternational.43.1821
  29. Girault, E.; Martens, A.; Jacques, P.; Houbaert, Y.; Verlinden, B.; Van Humbeeck, J.: Comparison of the effects of silicon and aluminum on the tensile behaviour of multiphase TRIP-assisted steels. Scr. Mater. 44 (2001), pp. 885-892, DOI:10.1016/ S1359-6462(00)00697-7
  30. Jacques, P.; Girault, E.; Harlet, P.; Delannay, F.: The developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase Steels. ISIJ Int. 41 (2001), pp. 1061-1067, DOI:10.2355/isijinternational.41.1061
  31. De Moor, E.; Lacroix, S.; Clarke, A.; Penning, J.; Speer, J.: Effect of retained austeni- te stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater. Trans. A 39A (2008), pp. 2586-2595, DOI:10.1007/s11661- 008-9609-z
  32. De Moor, E.; Speer, J.; Matlock, D.; Kwak, J.; Lee, S.: Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels. ISIJ Int. 51 (2011) 1, pp. 137-144, DOI:10.2355/isijinternational.51.137
  33. Yan, S.; Liu, X.; Liu, W.; Lan, H.; Wu, H.: Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) process. Mater. Sci. Eng. A 620 (2015), pp. 58-66, DOI:10.1016/j.msea.2014.09.047
  34. Kähkönen, J.: Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel; molybdenum; aluminum and copper additions. Mines Theses & Dissertations, Colorado School of Mines, 2016
  35. Matlock, D.; Speer, J.; De Moor, E.; Gibbs, P.: TRIP steels -Historical perspectives and recent developments. Proc. of 1 st International Conference on High Manganese Steels, 2011, Seoul, South Korea, pp. 1-15
  36. Krauss, G.: Martensite in steel: strength and structure. Mater. Sci. Eng. A 273-275 (1999), pp. 40-57, DOI:10.1016/S0921-5093(99)00288-9
  37. Bibliography DOI:10.3139/105.110381
  38. HTM J. Heat Treatm. Mat. 74 (2019) 2; page 70-83
  39. © Carl Hanser Verlag GmbH & Co. KG ISSN 1867-2493